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Progress Summary

A spatio-temporal system for recognizing handprint digit strings was designed and trained to recognize
handprinted ZIP codes. The results of our work on a biologically motivated model of reflexive reasoning
were used to implement a pilot system for performing rapid reasoning using very large knowledge bases. The
pilot system which runs on a 32 node CM-5, can encode over 300,000 items and respond in less than 500
msec. to queries requiring reasoning upto a depth of eight.

Progress Report

We have continued our investigation of the representational capabilities of spatio-temporal networks and
their application to reflexive reasoning and pattern recognition. These network use recurrent connectiors
and variable delay links. In addition to the firing rate, the firing time of cells relative to other cells, carries
representational significance in these models (the synchronous firing of cells being an important special case).

We finished the design of a spatio-temporal model for handprint digit string recognition. The model
was trained to recognize handprinted ZIP codes. In addition to the obvious practical significance, the work
furthers our understanding of spatiotemporal models for pattern recognition and demonstrates that the
approach offers a natural solution to the problem of shift-invariance, enables a pattern recognition system
to handle arbitrarily long inputs and partially solves the segmentation/recognition dilemma. In earlier work
we had developed a system for isolated digit recognition and done some preliminary work on extending the
system to connected pairs of digits. The additional work extended the system to do full word (ZIP code)
recognition. The results of this work are described in an article submitted to the journal Connection Science
for publication and was the subject of Thomas Fontaine’s PhD dissertation (December 1993).

We are also leveraging the results of our reflexive reasoning system based on temporsl synchrony to build
a system for performing rapid reasoning using very large knowledge bases. The aim is to build a system
whose response time is fast enough to support inferencing for a real-time speech understanding system. This
means being able to respond to retrieval as well as inferential queries within a few hundred milliseconds. We
have a pilot implementation on a 32 node CM-5 that can encode over 300,000 rules, facts, and types and
respond to queries whose response requires inferences that are 10 deep in about 500msec. The effectiveness
of the implementation can be directly attributed to the constraints on representation and inference suggested
by the use of temporal synchrony for expressing dynamic bindings. The result of the CM-5 implementation
are described in the enclosed technical report (ICSI TR-94-031). This research is the topic of D.R. Mani’s
PhD dissertation.

Results of work on our model for reflexive reasoning using temporal synchrony have appeared in Behavioral
and Brain Sciences and Connection Science journals and in the 1993 International Joint Conference on
Artificial Intelligence.
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I have begun investigating a possible solution to the “catastrophic interference problem”. In brief, the
problem is this: If a network that has already been trained to solve task A is trained to solve task B, it
forgets the solution to task A unless it is simultaneously retrained on task A. This problem is an inherent
weakness of most incremental learning algorithms and is perhaps the biggest impediment in the development
of scalable learning systems. The solution being investigated is as follows: Initially the system focuses on
a small number of categories. After it learns these categories, it tries to identify which features formed
in the “hidden layer” play a crucial role in the recognition of these categories. The system freezes these
crucial features and as a result they cannot be obliterated during subsequent learning (although they may
undergo some fine tuning). These frozen features are however, available to other structures that are learned
subsequently to recognize other categories. An important claim is that the set of features will gradually
stabilize and learning new categories will get progressively easier and involve combining existing features in
the appropriate manner. These ideas are being investigated in the context of training using spatio-temporal
to recognize digit strings.
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Abstract: Human agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency — as though these
inferences were a reflexive response of their cognitive apparatus. Furthermore, these inferences are drawn with reference to a large
body of background knowledge. This remarkable human ability seems paradoxical given the complexity of reasoning reported by
researchers in artificial intelligence. It also poses a challenge for cognitive science and computational neuroscience: How can a system
of simple and slow neuronlike elements represent a large body of systemic knowledge and perform a range of inferences with such
speed? We describe a computational model that takes a step toward addressing the cognitive science challenge and resolving the
artificial intelligence paradox. We show how a connectionist network can encode millions of facts and rules involving n-ary predicates
and variables and perform a class of inferences in a few hundred milliseconds. Efficient reasoning requires the rapid representation
and propagation of dynamic bindings. Our model (which we refer to as sHRUTI) achieves this by representing (1) dynamic bindings as
the synchronous firing of appropriate nodes, (2) rules as interconnection patterns that direct the propagation of rhythmic activity, and
(3) long-term facts as temporal pattern-matching subnetworks. The model is consistent with recent neurophysiological evidence that
synchronous activity occurs in the brain and may play a representational role in neural information processing. The model also makes
specific psychologically significant predictions about the nature of reflexive reasoning. It identifies constraints on the form of rules
that may participate in such reasoning and relates the capacity of the working memory underlying reflexive reasoning to biological
parameters such as the lowest frequency at which nodes can sustain synchronous oscillations and the coarseness of synchronization.

Keywords: binding problem; connectionism; knowledge representation; long-term memory; neural oscillations; reasoning; short-
term memory; systematicity; temporal synchrony; working memory

reasoning, consider the following example derived from
Schubert (1989). Imagine a person reading a variation of

1. introduction

The ability to represent and reason with a large body of
knowledge in an effective and systematic manner is a
central characteristic of cognition. This is borne out by
research on artificial intelligence and cognitive science,
which suggests that reasoning underlies even the most
commonplace intelligent behavior. For example, lan-
guage understanding, a task we usually perform rapidly
and effortlessly, depends upon our ability to make predic-
tions, generate explanations, and recognize speakers’
plans.! To appreciate the richness and speed of human

© 1993 Cambridge University Press 0140-525X/93 $5.00+.00

the Little Red Riding Hood (LRRH) story, in which the
wolf intends to eat LRRH in the woods. The reader is at
the point in the story where the wolf, who has followed
LRRH into the woods, is about to attack her. The next
sentence reads: “The wolf heard some woodcutters
nearby and so he decided to wait.” It seems reasonable to
claim that the reader will understand this sentence spon-
taneously and without conscious effort. However, a care-
ful analysis suggests that even though the reader remains
unaware of it, understanding this sentence requires a
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chain of reasoning that may be described informally as
follows (parenthetical text identifies the background
knowledge that might mediate the reasoning process):

The wolf will approach LRRH (to eat something you

have to be near it); LRRH will scream (because a child is

scared by an approaching wild animal); upon hearing
the scream the woodcutters will know that a child is in
danger (because a child’s screaming suggests that she is
in danger); the woodcutters will go to the child (people
want to protect children in danger, and in part this
involves determining the source of the danger); the
woodcutters will try to prevent the wolf from attacking

LRRH (people want to protect children); in doing so

the woodcutters may hurt the wolf (preventing an

animal from attacking may involve physical force); so
the wolf decides to wait (because an animal does not
want to get hurt).

One could argue that some of the steps in this reasoning
process are precompiled or “chunked,” but it would be
unreasonable to claim that the entire chain of reasoning
can be construed as direct retrieval or even a single-step
inference. Hence, in addition 10 accessing lexical items,
parsing, and resolving anaphoric reference, some compu-
tation similar to the above chain of reasoning must occur
when the sentence in question is processed. As another
example, consider the sentence “John seems to have
suicidal tendencies; he has joined the Colombian drug
enforcement agency.” In spite of its being novel, we can
understand the sentence spontaneously and without con-
scious effort. This sentence, however, could not have
been understood without using background knowledge
and dynamically inferring that joining the Colombian
drug enforcement agency has dangerous consequences,
and since John probably knows this, his decision to join
the agency suggests that he has suicidal tendencies.

As the above examples suggest, we can draw a variety of
inferences rapidly, spontaneously, and without conscious
effort — as though they were a reflexive response of our
cognitive apparatus. Let us accordingly describe such
reasoning as reflexive (Shastri 1990).2 Reflexive reasoning
may be contrasted with reflective reasoning, which re-
quires reflection, conscious deliberation, and often an
overt consideration of alternatives and weighing of possi-
bilities. Reflective reasoning takes longer and often re-
quires the use of external props such as a paper and
pencil. Examples of such reasoning are solving logic
puzzles, doing cryptarithmetic, or planning a vacation.3

Our remarkable ability to perform reflexive reasoning
poses a challenge for cognitive science and neuroscience:
How can a system of simple and slow neuronlike elements
represent a large body of systematic knowledge and
perform a range of inferences with such speed? With
nearly 1012 computing elements and 105 interconnec-
tions, the brain’s capacity for encoding, communicating,
and processing information seems overwhelming. But if
the brain is extremely powerful, it is also extremely
limited: First, neurons are slow computing devices.
Second, they communicate relatively simple messages
that can encode only a few bits of information. Hence a
neuron’s output cannot encode names, pointers, or com-
plex structures.4 Finally, the computation performed by a
neuron is best described as an analog spatio-temporal
integration of its inputs. The relative simplicity of a
neuron’s processing ability with reference to the needs of
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symbolic computation, and the restriction on the com-
plexity of messages exchanged by neurons, impose strong
constraints on the nature of neural representations and
processes (Feldman 1989; Feldman & Ballard 1982; Shas-
tri 1991). [See also Feldman: “Four frames suffice: A
provisional model of vision and space” BBS 8(2) 1985;
Ballard: “Cortical connections and parallel processing:
Structure and function” BBS 9(1) 1986.] As we discuss in
section 2, a reasoning system must be capable of encoding
systematic and abstract knowledge and instantiating it in
specific situations to draw appropriate inferences. This
means that the system must solve a complex version of the
variable-binding problem (see Section 2 and Feldman
1982; von der Malsburg 1986). In particular, the system
must be capable of representing composite structures in a
dynamic fashion and systematically propagating them to
instantiate other composite structures. This turns out to
be a difficult problem for neurally motivated models. As
McCarthy (1988) observed, most connectionist systems
suffer from the “unary or even propositional fixation” with
their representational power restricted to unary predi-
cates applied to a fixed object. Fodor and Pylyshyn
(1988a) have even questioned the ability of connectionist
networks to embody systematicity and compositionality.

1.1. Reflexive reasoning: Some assumptions,
observations and hypotheses

Reflexive reasoning occurs with reference to a large body
of long-term knowledge. This knowledge forms an inte-
gral part of an agent’s conceptual representation and is
retained for a considerable period of time once it is
acquired. We wish to distinguish long-term knowledge
from short-term as well as medium-term knowledge. By
the last we mean knowledge that persists longer than
short-term knowledge and may be remembered for days
or even weeks. Such medium-term knowledge, however,
may be forgotten without being integrated into the agent’s
long-term conceptual representation. The distinction be-
tween medium- and long-term knowledge is not arbitrary
and seems to have a neurological basis. It has been
suggested that medium-term memories are encoded via
long-term potentiation (LTP) (Lynch 1986), and some of
them subsequently converted into long-term memories
and encoded via essentially permanent structural changes
(see, e.g., Marr 1971; Squire 1987; Squire & Zola-Morgan
1991).

An agent’s long-term knowledge base (LTKB) encodes
several kinds of knowledge. These include specific knowl-
edge about particular entities, relations, events, and situ-
ations, and general svstematic knowledge about the regu-
larities and dependencies in the agent's environment. For
example, an agent's LTKB may contain specific knowl-
edge such as “Paris is the capital of France” and “Susan
bought a Rolls-Royce,” as well as systematic and
instantiation-independent knowledge such as “if one
buys something then one owns it.” We will refer to
specific knowledge as facts, and general instantiation-
independent knowledge as rules (note that by a rule we do
not mean a “rule of inference” such as modus ponens). The
LTKB may also include knowledge about the attributes of
features of concepts and the superordinate/subordinate
relations among concepts, and also procedural knowledge
such as “how to mow a lawn.”




In discussing the LTKB we are focusing on representa-
tional adequacy, that is, the need to represent entities,
relations, inferential dependencies, and specific as well as
general knowledge. The expressiveness implied by this
generic specification, however, is sufficient to represent
knowledge structures such as frames (Minsky 1975),
scripts (Schank & Abelson 1977), and productions or if-
then rules (Newell & Simon 1972).

A serious attempt at compiling commonsense knowl-
edge suggests that the LTKB may contain as many as 10%
items (Guha & Lenat 1990). This should not be very
surprising given that it must include, besides other
things, our knowledge of naive physics and naive psychol-
ogy; facts about ourselves, our family, and friends; facts
about history and geography; our knowledge of artifacts;
sports, art, and music trivia; and our models of social and
civic interactions.

1.1.1. Space and time constraints on a reflexive reasoner.
Given that there are about 10!2 cells in the brain, the
expected size of the LTKB (108) rules out any encoding
scheme whose node requirement is quadratic (or higher)
in the size of the LTKB.5 In view of this we adopt the
working hypothesis that the node requirement of a model
of reflexive reasoning should be no more than linear in
(i.e., proportional to) the size of the LTKB. This is a
reasonable hypothesis. Observe that (1) a node in an
idealized computational model may easily correspond to a
hundred or so actual cells, and (2) the number of cells
available for encoding the LTKB can only be a fraction of
the total number of cells.

We believe that although the size of an agent’s LTKB
increases considerably from, say, age 10 to 30, the time
taken by an agent to understand natural language does
not. This leads us to suspect that the time taken by an
episode of reflexive reasoning does not depend on the
overall size of the LTKB but only on the complexity of
the particular episode of reasoning. Hence we adopt the
working hypothesis that the time required to perform
reflexive reasoning is independent of the size of the
LTKB.®

The independence of (1) the time taken by reflexive
reasoning and (2) the size of the LTKB implies that
reflexive reasoning is a parallel process and involves the
simultaneous exploration of a number of inferential paths.
Hence, a model of reflexive reasoning must be parallel at
the level of rule application and reasoning, that is, it must
support knowledge-level parallelism. This is a critical
constraint and one that is not necessarily satisfied by a
connectionist model simply because it is “connectionist”
(see also Sumida & Dyer 1989).

We understand written language at the rate of some-
where between 150 and 400 words per minute (Carpenter
& Just 1977). In other words, we can understand a typical
sentence in a matter of one to two seconds. Given that
reflexive reasoning occurs during language understand-
ing, it follows that episodes of reflexive reasoning may
take as little as a few hundred milliseconds.

1.1.2. Refiexive reasoning is limited reasoning. Complex-
ity theory rules out the existence of a general-purpose
reasoning system that derives all inferences efficiently.
This entails that there must exist constraints on the class
of reasoning that may be performed in a reflexive manner.
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Not surprisingly, cognitive agents can perform only a
limited class of inferences with extreme efficiency. Natu-
rally, we expect that the representational and reasoning
ability of the proposed system will also be constrained and
limited in a number of ways. However, we would like the
strengths and limitations of the system to be psycho-
logically plausible and to mirror some of the strengths and
limitations of human reasoning.

1.2. Computational constraints

Connectionist models (Feldman & Ballard 1982; Rumel-
hart & McClelland 1986) are intended to emulate the
information-processing characteristics of the brain - al-
beit at an abstract computational level - and to reflect ats
strengths and weaknesses. Typically, a node in a connec-
tionist network corresponds to an idealized neuron, and a
link corresponds to an idealized synaptic connection. Let
us enumerate some core computational features of con-
nectionist models: (1) Nodes compute very simple func-
tions of their inputs. (2) They can only hold limited state
information — while a node may maintain a scalar “poten-
tial,” it cannot store and selectively manipulate bit
strings. (3) Node outputs do not have sufficient resolution
to encode symbolic names or pointers. (4) There is no
central controller that instructs individual nodes to per-
form specific operations at each step of processing.

1.3. A preview

We discuss the variable-binding problem as it arises in the
context of reasoning and describe a neurally plausible
solution to this problem. The solution involves maintain-
ing and propagating dynamic bindings using synchronous
firing of appropriate nodes. We show how our solution
leads to a connectionist knowledge representation and
reasoning system (which we call sHRUTI, see Response,
Note 1) that can encode a large LTKB consisting of facts
and rules involving n-ary predicates and variables, and
perform a broad class of reasoning with extreme effi-
ciency. Once a query is posed to the system by initializing
the activity of appropriate nodes, the system computes an
answer automatically and in time proportional to the
length of the shortest chain of reasoning leading to
the conclusion. The ability to reason rapidly is a con-
sequence, in part, of the system’s ability to maintain
and propagate a large number of dynamic bindings
simultaneously.

The view of information processing implied by the
proposed system is one where (1) reasoning is the tran-
sient but systematic propagation of a rhythmic pattern of
activity, (2) each entity in the dynamic memory is a phase
in this rthythmic activity, (3) dynamic bindings are repre-
sented as the synchronous firing of appropriate nodes, (4)
long-term facts are subnetworks that act as temporal
pattern matchers, and (5) rules are interconnection pat-
terns that cause the propagation and transformation of
rhythmic patterns of activity.

We cite neurophysiological data that suggest that the
basic mechanisms proposed for representing and propa-
gating dynamic variable bindings, namely, the propaga-
tion of rhythmic patterns of activity and the synchronous
activation of nodes, exist in the brain and appear to play a
role in the representation and processing of information.
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Qur system predicts a number of constraints on reflex-
ive reasoning that have psychological implications. These
predictions concern the capacity of the workin;; memory
underlying reflexive reasoning (WMRR) and the form of
rules that can participate in such reasoning. The predic-
tions also relate the capacity of the WMRR and the time it
would take to perform one step of reasoning to biological
parameters such as the lowest frequency at which nodes
can sustain synchronous oscillations, the coarseness of
synchronization, and the time it takes connected nodes to
synchronize. By choosing biologically plausible system
parameters, we show that it is possible for a system of
neuronlike elements to encode millions of facts and rules
and yet perform multistep inferences in a few hundred
milliseconds.

Reasoning is the spontaneous and natural outcome of
the system’s behavior. The system does not apply syntac-
tic rules of inference such as modus ponens. There is no
separate interpreter or inference mechanism that manip-
ulates and rewrites symbols. The network encoding of the
LTKB is best viewed as a vivid internal model of the
agent’s environment, where the interconnections be-
tween (internal) representations directly encode the de-
pendencies between the associated (external) entities.
When the nodes in this model are activated to reflect a
given state of affairs in the environment, the model
spontaneously simulates the behavior of the external
world and in doing so makes predictions and draws
inferences.

The representational and inferential machinery devel-
oped in this work has wider significance and can be
applied to other problems whose formulation requires the
expressive power of n-ary predicates, and whose solution
requires the rapid and systematic interaction between
long-term and dynamic structures. Some examples of
such problems are (1) parsing and the dynamic linking of
syntactic and semantic structures during language pro-
cessing, and (2) model-based visual object recognition
requiring the dynamic representation and analysis of
spatial relations between objects and/or parts of objects.
Recently, Henderson (1992) has proposed the design of a
natural language parser based on our computational
model.

1.4. Caveats

Our primary concern has been to extend the representa-
tional and inferential power of neurally plausible (connec-
tionist) models and to demonstrate their scalability. We
are also concerned that the strengths and limitations of
our system be psychologically plausible. However, our
aim has not been to model data from specific psychologi-
cal experiments. What we describe is a partial model of
reflexive reasoning. It demonstrates how a range of rea-
soning can be performed in a reflexive manner, and it also
identifies certain types of reasoning that cannot be per-
formed in a reflexive manner. Our system, however, does
not model all aspects of reflexive reasoning. For example,
we focus primarily on declarative and semantic knowl-
edge and do not mode! reflexive analogical reasoning. or
reflexive reasoning involving episodic memory (Tulving
1983) and imagery. We do not sav much about what the
actual contents of an agent’s LTKB onght to be, nor do we
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provide a detailed answer to the question of learning. We
do, however, discuss in brief how specific facts may be
learned and existing rules modified (sect. 10.6). Neural
plausibility is an important aspect of this work — we show
that the proposed system can be realized by using neu-
rally plausible nodes and mechanisms, and we investigate
the consequences of choosing biologically motivated
values of system parameters. Needless to say, what we
describe is an idealized computational model and it is not
intended to be a blueprint of how the brain encodes an
LTKB and performs reflexive reasoning.

1.4.1. An outline of the paper. Section 2 discusses the
dynamic-binding problem in the context of reasoning.
Section 3 presents our solution to this problem and the
encoding of long-term rules and facts. Section 4 describes
a reasoning system capable of encoding an LTKB and
answering queries on the basis of the encoded knowledge.
The interface of the basic reasoning system with an IS-A
hierarchy that represents entities, types (categories), and
the super-/subordinate concept relations between them
is described in section 5. Section 6 discusses a solution to
the multiple instantiation problem. Section 7 discusses
the biological plau:ibility of our system and identifies
neurally plausible values of certain system parameters.
Section 8 points out the psychological implications of the
constraints on reflexive reasoning suggested by the sys-
tem. Section 9 discusses related connectionist models and
the marker-passing system NETL. Finally, section 10 dis-
cusses some open problems related to integrating the
proposed reflexive-reasoning system with an extended
cognitive system. Certain portions of the text are set in
small type. These cover detailed technical material and
may be skipped without loss of continuity.

2. Reasoning and the dynamic-binding probiem

Assume that an agent's LTKB embodies the following
rules:?

1. If someone gives a recipient an object then the
recipient comes to own that object.

2. Owners can sell what they own.

Given the above knowledge, an agent would be capable of
inferring “Mary owns Bookl” and “Mary can sell Bookl”
on being told “John gave Mary Bookl.” A connectionist
reasoning system that embodies the same knowledge
should also be capable of making similar inferences and,
hence, exhibiting the following behavior: If the network’s
pattern of activity is initialized to represent the fact “John
gave Mary Bookl,” then very soon its activity should
evolve to include the representations of the “Mary owns
Bookl” and “Mary can sell Bookl.”

Let us point out that the knowledge embodied in a rule
may be viewed as having two distinct aspects. A rule
specifies a systematic correspondence between the argu-
ments of certain “predicates” (where a predicate may be
thought of as a relation, a frame. or a schema). For ex-
ample, rule (1) specifies that a "give” event leads to an
“own” event where the recipient of “give” corresponds to
the owcner of “own,” and the object of “give” corresponds
to the object of “own.” Let us refer to this aspect of a rule
as systematicity.® The second aspect of the knowledge
embodied in a rale conceerns the appropriateness of the




specified argument correspondence in a given situation,
depending upon the types (or features) of the argument
fillers involved in that situation. Thus appropriateness
may capture type restrictions that argument fillers must
satisfy in order for a rule to fire. It may also indicate type
preferences and provide a graded measure of a rule’s
applicability in a given situation on the basis of the types
of the argument fillers in that situation.

We will first focus on the problems that must be solved
in order to incorporate systematicity in a connectionist
system. In section 5 we will discuss how the solutions
proposed to deal with systematicity may be augmented
to incorporate appropriateness and represent context-
dependent rules that are sensitive to the types of the
argument fillers.

If we focus on systematicity, then rules can be suc-
cinctly described by using the notation of first-order logic.
For example, rules (1) and (2) can be expressed as the
following first-order rules:

Vx,y.z [give(x,4.z) > own(y,z)] Y

Vu,0 [own(u,v) > can-sell(u,v)] [PA]

where give is a three-place predicate with arguments:
giver, recipient, and give-object; own is a two-place predi-
cate with arguments: owner and own-object; and can-sell
is also a two-place predicate with arguments: potential-
seller and can-sell-object. The use of quantifiers and
variables allows the expression of general, instantiation-
independent knowledge and helps in specifying the sys-
tematic correspondence between predicate arguments.®
A fact may be expressed as a predicate instance (atomic
formula). For example, the fact “John gave Mary Bookl”
may be expressed as give(John, Mary, Bookl).

A connectionist network must solve three technical
problems in order to incorporate systematicity. We dis-
cuss these problems in the following three sections.

2.1. Dynamic representation of facts: Instantiating
predicates

A reflexive-reasoning system should be capable of repre-
senting facts in a rapid and dynamic fashion. Observe that
the reasoning process generates inferred facts dynam-
ically and the reasoning system should be capable of
representing these inferred facts. Furthermore, the rea-
soning system must interact with other processes that
communicate facts and pose queries to it, and the system
should be capable of dynamically representing such facts
and queries.

The dynamic representation of facts poses a problem
for standard connectionist models. Consider the fact
give(John, Mary, Bookl). This fact cannot be represented
dynamically by simply activating the representations of
the arguments giver. recipient, and give-object, and the
constituents “John,” “Mary,” and “Bookl.” Such a repre-
sentation would suffer from cross-talk and would be
indistinguishable from the representations of give(Mary,
John, Bookl) and give(Bookl. Mary, John). The problem
is that this fact ~ like any other instantiation of an n-ary
predicate — is a composite structure: it does not merely
express an association hetween the constituents “John,”
“Mary.” and "Bookl.” rather it expresses a specific rela-
tion whercin each constituent plavs a distinet vole. Thus a
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fact is essentially a collection of bindings between pre-
dicate arguments and fillers. For example, the fact .
give(John, Mary, Bookl) is the collection of argument-
filler bindings (giver = John, recipient = Mary, give-
object = Bookl). Hence representing a dynamic fact
amounts to representing, dynamically, the appropriate
bindings between predicate arguments and fillers.

The dynamic representation of facts should also sup-
port the simultaneous representation of multiple facts
such as give(John, Mary, Bookl) and give(Mary, John,
Car3) without “creating” ghost facts such as give(Mary,
John, Bookl).

2.1.1. Static versus dynamic bindings. A connectionist
encoding that represents the bindings associated with the
fact give(John, Mary, Bookl) without cross-talk is illus-
trated in Figure 1 (cf. Shastri 1988b; Shastri & Feldman
1986). Each triangular binder node binds the appropriate
filler to the appropriate argument and the focal node
give-23 provides the requisite grouping between the set
of bindings that make up the fact. The binder nodes
become active on receiving two inputs and thus serve to
retrieve the correct filler, given a fact and an argument
(and vice versa). Such a static encoding, using physically
interconnected nodes and links to represent argument-
filler bindings, is suitable for representing stable and
long-term knowledge, because the required focal and
binder nodes may be learned (or recruited) over time in
order to represent new but stable bindings of constitu-
ents. 10 This scheme, however, is implausible for repre-
senting bindings required to encode dynamic structures
that will arise during language understanding and visual
processing. Such dynamic bindings may have to be repre-
sented very rapidly — within a hundred milliseconds -
and it is unlikely that there exist mechanisms that can
support widespread structural changes and growth of new
links within such time scales. An alternative would be to
assume that interconnections between all possible pairs of
arguments and fillers already exist. These links normally
remain “inactive” but the appropriate subset of these links
becomes “active” temporarily to represent dynamic bind-
ings (Feldman 1982; von der Malsburg 1986). This ap-
proach, however, is also problematic because the number
of all possible argument-filler bindings is extremely large,
and having preexisting structures for representing all

Figure 1. Encoding static bindings using dedicated nodes and
links: give-23 is a focal node and the triangles represent binder
nodes.
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these bindings will require a prohibitively large num-
ber of nodes and links. Techniques for representing
argument-filler bindings on the basis of the von Neumann
architecture also pose difficulties because they require
communicating names or pointers of fillers to appropriate
argument nodes and vice versa. As pointed out earlier,
the storage and processing capacity of nodes as well as the
resolution of their outputs is not sufficient to store, pro-
cess, and communicate names or pointers.

2.2. Inference, propagation of dynamic bindings and
the encoding of rules

The second technical problem that a connectionist rea-
soning system must solve concerns the dynamic genera-
tion .f inferred facts. For example, starting with a dy-
namic representation of give(John, Mary, Bookl), the
state of network encoding rules (1) and (2) should evolve
rapidly to include the dynamic representations of the
inferred facts: own(Mary, Bookl) and can-sell(Mary,
Bookl). This process should also be free of cross-talk and
not lead to spurious bindings.

Generating inferred facts involves the systematic prop-
agation of dynamic bindings in accordance with the rules
embodied in the system. A rule specifies antecedent and
consequent predicates and a correspondence between
the arguments of these predicates. For example, the rule
Vx,y,z [give(x,y,z) > own(y,z)] specifies that a give event
results in an own event wherein the recipient of a give
event corresponds to the owner of an own event and the
give-object of a give event corresponds to the own-object
of an own event. An application of a rule (i.e., a step of
inference) therefore amounts to taking an instance of the
antecedent predicate(s) and creating, dynamically, an
instance of the consequent predicate, with the argument
bindings of the latter being determined by applying the
argument correspondence specified in the rule to the
argument bindings of the former. Thus the application of
the rule Vx,y,z [give(x,y,z) = own(y,x)], in conjunction
with an instance of give, give(junn, Mary, Bookl), creates
an instance of own with the bindings (owner = Mary, own-
object = Bookl). These bindings constitute the inferred
fact own(Mary, Bookl). Once the representation of an
inferred fact is established, it may be used in conjunction
with other domain rules to create other inferred facts.
Such a chain of inference may lead to a proliferation of
inferred facts and the associated dynamic bindings.

2.3. Encoding long-term facts

In addition to encoding domain rules such as (1) and (2), a
connectionist reasoning system must also be capable of
encoding facts in its LTKB and using them during recall,
recognition, query answering, and reasoning. For exam-
ple, we expect our system to be capable of encoding a fact
such as “John bought a Rolls-Royce” in its LTKB and using
it to answer rapidly the query Did John buy a Rolls-
Royce? We also expect it to use this fact in conjunction
with other knowledge to answer rapidly queries such as
Does John own a car? Observe that storing a long-term
fact would require storing the associated bindings as a
static long-term structure. This structure should interact
with dynamic bindings and recognize those that match it.
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2.4. Dynamic binding and categorization

As discussed at the beginning of section 2, the appro-
priateness of a rule in a specific situation may depend on
the types/features of the argument fillers involved in that
situation. Thus categorization plays a crucial role in the
propagation of dynamic bindings during reasoning. Con-
sider the rule: Vx,y walk-into(x,y) = hurt(z) (i.e., If one
walks into something then one gets hurt). As stated, the
rule only encodes systematicity and underspecifies the
relation between “walking into” and “getting hurt.” It
would fire even in the situation “John walked into the
mist” and lead to the inference “John got hurt.” A com-
plete encoding of the knowledge embodied in the rule
would also specify the types/features of the argument
fillers of “walk-into” for which the application of this rule
would be appropriate. Given such an encoding, the prop-
agation of binding from the first argument of walk-into to
the argument of hurt will occur only if the fillers of the
arguments of walk-into belong to the appropriate types
(we discuss the encoding of such rules in sect. 5).

The use of categorization can also prevent certain cases
of cross-talk in the representation of dynamic facts. For
example, categorization may prevent cross-talk in the
representation of buy(Mary, Bookl) because spurious
versions of this fact such as buy(Bookl, Mary) would
violate category restrictions and, hence, would be unsta-
ble. However, categorization cannot in and of itself solve
the dynamic-binding problem, because it alone cannot
enforce systematicity. For example, categorization cannot
determine that the dynamic fact give(John, Mary, Bookl)
should result in the inferred fact own(Mary, Bookl) but
not own(John, Bookl).

2.5. The dynamic-binding problem in vision
and language

The need for systematically dealing with comgosite ob-
jects in a dynamic manner immediately gives rise to the
dynamic-binding problem. Thus the dynamic-binding
problem occurs during any cognitive activity that admits
systematicity and compositionality. Consider vision. Vi-
sual object recognition involves the rapid grouping of
information over the spatial extent of an object and across
different feature maps so that features belonging to one
object are not confused with those of another (Treisman &
Gelade 1980). The binding of features during visual pro-
cessing is similar to the binding of argument fillers during
reasoning. In terms of representational power, however,
the grouping of all features belonging to the same object
can be expressed using unary-predicates,!! but as we
have seen, reasoning requires the representation of unary
as well as n-ary predicates. A similar need would arise ina
more sophisticated vision system that dynamically repre-
sents and analyzes spatial relations between objects or
parts of an object.

Although there may be considerable disagreement
over the choice of primitives and the functional relation-
ship between the “meaning” of a composite structure and
that of its constituents, it seems apparent that a computa-
tional model of language should be capable of computing
and representing composite structures in a systematic
and dynamic manner. Thus language understanding re-




quires a solution to the dynamic-binding problem, to
support reasoning as well as syntactic processing and the
dynamic linking of syntactic and semantic structures.

3. Solving the dynamic-binding problem

In this section we describe solutions to three technical
problems associated with dynamic bindings discussed in
sections 2.1 through 2.3. The solutions involve several
ideas that complement each other and together lead to a
connectionist model of knowledge representation and
reflexive reasoning.

As pointed out in section 2.1, it is implausible to
represent dynamic bindings by using structural changes,
prewired interconnection networks, or by communicat-
ing names/pointers of arguments and fillers. Instead,
what is required is a neurally plausible mechanism for
rapidly and temporarily labeling the representations of
fillers and predicate arguments to encode dynamically
argument-filler bindings. Also required are mechanisms
for systematically propagating such transient labels and
allowing them to interact with long-term structures.

In the proposed system we use the temporal structure
of node activity to provide the necessary labeling. Specifi-
cally, we represent dynamic bindings between arguments
and fillers by the synchronous firing of appropriate nodes.
We also propose appropriate representations for n-ary
predicates, rules, long-term facts, and an IS-A hierarchy
that facilitate the efficient propagation and recognition of
dynamic bindings. 12

The significance of temporally organized neural activity
has long been recognized (Freeman 1981; Hebb 1949;
Sejnowski 1981). In particular, von der Malsburg (1981;
1986) has proposed that correlated activity within a group
of cells can be used to represent the dynamic grouping of
cells. He also used temporal synchrony and synapses that
can alter their weights within hundreds of milliseconds to
model sensory segmentation and the human ability to
attend to a specific speaker in a noisy environment (von
der Malsburg & Schneider 1986). Abeles (1982; 1991) has
put forth the hypothesis that computations in the cortex
occur via “synfire chains” — propagation of synchronous
activity along diverging and converging pathways be-
tween richly interconnected cell assemblies. Crick (1984)
has also suggested that the use of fine temporal coinci-
dence to represent dynamic bindings and synchronized
activity across distant regions forms the keystone of Da-
masio’s (1989) general framework for memory and con-
sciousness. Several researchers have reported the occur-
rence of synchronous artivity in the cat and monkey visual
cortex and presented evidence in support of the conjec-
ture that the visual cortex may be using synchronous
and/or oscillatory activity to solve the binding problem
(see sect. 7).

Recently, other researchers have used temporal syn-
chrony to solve various aspects of the binding problem in
visual perception (Horn et al. 1991; Hummel & Bieder-
man 1992; Strong & Whitechead 1989). In this work we use
temporal synchrony to solve a different problem, namely,
the representation of, and systematic reasoning with,
conceptual knowledge. In solving this problem we also
demonstrate that temporal synchrony can support more
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complex representations. The expressiveness and infer-
ential power of our model exceed that of the models cited
above, because our system can represent dynamic instan- -
tiations of n-ary predicates, including multiple instantia-
tions of the same predicate. 13

Clossman (1988) has used synchronous activity to rep-
resent argument-filler bindings, but he has not suggested
an effective representation of “rules” (and long-term
facts). Consequently, his system could not propagate
dynamic bindings to perform inferences.

As an abstract computational mechanism, temporal
synchrony can be related to the notion of marker passing
(Fahlman 1979; Quillian 1968).14 Fahlman has proposed
the design of a marker-passing machine (NETL) consisting
of a parallel network of simple processors and a serial
computer that controlled the operation of the parallel
network. Each node could store a small number of dis-
crete “markers” (or tags) and each link could propagate
markers between nodes under the supervision of the
network controller. Fahlman showed how his machine
could compute transitive closure and set intersection in
parallel, and in turn, solve a class of inheritance and
recognition problems efficiently. Fahlman’s system, how-
ever, was not neurally plausible. First, nodes in the
system were required to store, match, and selectively
propagate marker bits. Although units with the appropri-
ate memory and processing characteristics may be readily
realized, using electronic hardware, they do not have any
direct neural analog. Second, the marker-passing system
operated under the strict control of a serial computer that
specified, “at every step of the propagation, exactly which
types of links were to pass which markers in which
directions” (Fahlman 1979},

The relation between marker passing and temporal
synchrony can be recognized by noting that nodes firing
in synchrony may be viewed as being marked with the
same marker, and the propagation of synchronous activity
along a chain of connected nodes can be viewed as the
propagation of markers. Thus, in developing our reason-
ing system using temporal synchrony we have also estab-
lished that marker-passing systems can be realized in a
neurally plausible manner. In the proposed system, noth-
ing has to be stored at a node in order to mark it with a
marker. Instead, the time of firing of a node relative to
other nodes and the coincidence between the time of
firing of a node and that of other nodes has the effect of
marking a node with a particular marker! A node in our
system is not required to match sny markers, it simply has
to detect whether appropriate inputs are coincident. Our
approach enables us to realize the abstract notion of
markers by using time, a dimension that is forever pre-
sent, and giving it added representational status.

As we shall see, the neural plausibility of our system
also results from its ability to operate without a central
controller. Once a query is posed to the system by
activating appropriate nodes, it computes the solution
without an external controller directing the activity of
nodes at each step of processing (see also sect. 9.1).

Several other connectionist solutions to the binding
problem have been suggested {Barnden & Srinivas 1991;
Dolan & Smolensky 1989; Feldman 1982; Lange & Dyer
1989; Touretzky & Hinton 1988). These alternatives are
discussed in section 9.3.
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3.1. Representing dynamic bindings

Refer to the representation of some predicates and enti-
ties shown in Figure 2. Observe th.. predicates, their
arguments, and entities are represented by using distinct
nodes. For example, the ternary predicate give is repre-
sented by the three argument nodes labeled giver, recip,
and g-obj together with an associated “node” depicted as a
dotted rectangle (the role of the latter is specified in sect.
3.3). For simplicity we assume that each argument node
corresponds to an individual connectionist node; this is an
idealization. In section 7.3 we discuss how each argument
node corresponds to an ensemble of nodes. Nodes such as
John and Mary correspond to focal nodes of more elabo-
rate connectionist representations of the entities “John”
and “Mary.” Information about the attribute values (fea-
tures) of “John” and its relationship to other concepts is
encoded by linking the focal node John to appropriate
nodes. (Details of such an encoding may be found in
Shastri 1991; Shastri & Feldman 1986). As explained by
Feldman (1989), a focal node may also be realized by a
small ensemble of nodes.

Dynamic bindings are represented in the system by the
synchronous firing of appropriate nodes. Specifically, a
dynamic binding between a predicate argument and its
filler is represented by the synchronous firing of nodes
that represent the argument and the filler. With refer-
ence to the nodes in Figure 2, the dynamic bindings
{giver = John, recipient = Mary, give-object = Bookl) are
represented by the rhythmic pattern of activity shown in
Figure 3. These bindings encode the dynamic fact
give(John, Mary, Bookl). The absolute phase of firing of
filler and argument nodes is not significant — what matters
is the coincidence (or the lack thereof) in the firing of
nodes. The activity of the dotted rectangular nodes is not

o §
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ansal (171 00 )
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Figure 2.  Encoding predicates and individual concepts: Dis-

tinct predicates and arguments are encoded using distinct nodes
(in sect. 7.4 we discuss how nodes may be replaced by an
ensemble of nodes). The hatched lines below concept nodes are
intended to highlight that these nodes are just focal nodes of a
much richer representation of concepts.
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Figure 3. Rhythmic pattern of activation representing the
dynamic bindings (giver = John, recipient = Mary, give-object
= Bookl). These bindings constitute the fact give( John, Mary,
Bookl). The binding between an argument and a filler is repre-
sented by the in-phase firing of associated nodes.

significant at this point and is not specificd. As another
example, consider the firing pattern shown in Figure 4.
This pattern of activation represents the single binding
(giver = John) and corresponds to the partially instanti-
ated fact give(John,x,y), (i.e., “John gave someonc
something”).

Figure 5 shows the firing pattern of nodes correspond-
ing to the dynamic representation of the bindings (giver =
John, recipient = Mary, give-object = Bookl, owner =
Mary, own-object = Bookl, potential-seller = Mary. can-
sell-object = Bookl). These bindings encode the facts
give(John, Mary, Bookl), own(Mary, Bookl), and can-
sell(Mary, Bookl). Observe that the (multiple) bindings
between Mary and the arguments recipient, owner, and
potential-seller are represented by these argument nodes
firing in-phase with Mary. Further, the individual con-
cepts Mary, Bookl, and John are firing out of phase and
occupy distinct phases in the rhythmic pattern of activity.

cs-obj
p-sellar

9-obj
recip

giver n
John ﬂ ﬂ n ﬂ

Mary

1
n_n
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Balis

time

Figure 4. Representation of the dvnamic binding (giver =
4 \

John) that constitates the partially instantiated fact “John gave

someone something.”
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Figure 5. Pattern of activation representing the dynamic
bindings (giver = John, recipient = Mary, give-object = Book 1,
owner = Mary, own-object = Bookl, potential-seller = Mary,
can-sell-object = Bookl). These bindings constitute the facts
give( John, Mary, Bookl), own{Mary, Bookl), and can-sell(Mary,
Bookl). The transient representation of an entity is simply a
phase within an oscillatory pattern of activity. The number of
distinct phases required to represent a set of dynamic bindings
equals only the number of distinct entities involved in the
bindings. In this example three distinct phases are required.
The bindings between Mary and the arguments recipient,
owner, and potential-seller are represented by the in-phase
firing of the appropriate argument nodes with Mary.

This highlights significant aspects of the proposed solu-
tion:

1. The transient or short-term representation of an
entity is simply a phase within a rhythmic pattern of
activity.

2. The number of distinct phases within the rhythmic
activation pattern only equals the number of distinct
entities participating in the dynamic bindings; this does
not depend on the total number of dynamic bindings
represented by the activation pattern.

3. The number of distinct entities that can participate
in dynamic bindings at the same time is limited by the
ratio of the period of the rhythmic activity and the width
of individual spikes.

Thus far we have assumed that nodes firing in syn-
chrony fire precisely in-phase. This is an idealization. In
general we would assume a coarser form of synchrony,
where nodes firing with a lag or lead of less than w/2 of one
another would be considered to be firing in synchrony.
This corresponds to treating the width of the “window of
synchrony” to be w.

3.2. Encoding rules and propagating dynamic bindings

In section 2.2 we described how a step of inference or rule
application may be viewed as taking an instance of the
antecedent predicate and dynamically creating an in-
stance of the consequent predicate, with the argument
bindings of the latter being determined by (1) the argu-
ment bindings of the former, and (2) the argument corre-
spondence specified by the rule. Consequently, the en-
cading of a rule should provide a means for propagating
bindings from the arguments of the antecedent predicate
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to the arguments of the consequent predicate in accor-
dance with the argument correspondence specified in the -
rule. With reference to Figure 2, encoding the rules
Vx,y,z [give(x,y,z) > own(y,z}] and Vu,v [own(u,v) = can-
sell(u,v)] should have the following effect: The state of
activation described by the rhythmic activation pattern
shown in Figure 3 should eventually lead to the rhythmic
activation pattern shown in Figure 5.

The desiicd behavior may be realized if a rule is
encoded by linking the arguments of the antecedent and
consequent predicates so as to reflect the correspondence
between arguments specified by the rule. For example,
the rule Vx,y,z [give(x,y,2) = own(y,z)] can be encoded by
establishing links between the arguments recipient and
give-object of give and the arguments owner and own-
object of own, respectively. If we also wish to encode the
rule ¥x,y [buy(x,y) = own{x,y)], we can do so by connec-
ting the arguments buyer and buy-object of buy to the
arguments owner and own-object of own, respectively.
This encoding is illustrated in Figure 6. In the idealized
model we are assuming that each argument is repre-
scnted as a single node and each argument correspon-
dence is encoded by a one-to-one connection between the
apj ropriate argument nodes. As discussed in section 7.3,
however, each argument will be encoded as an ensemble
of nodes and each argument correspondence will be
encoded by many-to-many connections between the ap-
propriate ensembles (for a preview see Fig. 26).

Arguments and concepts are encoded by using what
we call p-btu nodes (where btu refers to “binary thresh-
old unit”). These nodes have the following idealized
behavior:

1. Ifanode A is connected to node B then the activity
of node B will synchronize with the activity of node A. In
particular, a periodic firing of A will lead to a periodic and
in-phase firing of B. We assume that p-btu nodes can
respond in this manner as long as the period of firing, ,

can-sefl |

Figure 6.  Encoding of predicates, individual concepts, and
the rules Vx.y.z {give(x, y. 2) = own(y.2)]. Vg [own(x, y) =
can-sell(x. y)]. and V. [ buy(x, y) = aen(x. y)]. Links between
arguments reflect the correspondence between arguments in
the antecedents and consequents of rules.
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lies in the interval [w,,,, . This interval can be
interpreted as defining the frequency range over which
p-btu nodes can sustain a synchronized response.

2. To simplify the description of our model we will
assume that periodic activity in a node can lead to syn-
chronous periodic activity in a connected node within one
period.

3. Athreshold, n, associated with a node indicates that
the node will fire only if it receives n or more synchronous
inputs. !5 If unspecified, a node’s threshold is assumed to
be one.!6

As described above, interconnected p-btu nodes can
propagate synchronous activity and form chains of nodes
firing in synchrony. In section 7 we point to evidence from
neurophysiology and cite work on neural modeling that
suggests that the propagation of synchronous activity is
neurally plausible. Given the above interconnection pat-
tern and node behavior, the initial state of activation
shown in Figure 7 will lead to the state of activation shown
in Figure 8 after one period, and to the state of activation
shown in Figure 9 after another period.

ca-obj

p-seller
o-obj
goni |l L TL 1T 1
mo ) 11 T1J1 11NN
Qiver _n___ﬂ ﬂ ﬂ ﬂ ﬂ
oo JL__ T T Tl J1
vy L JL 111 N n T

Susan

moot | JL_ [T T} n_n._n
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Figure 7. Initial pattern of activation representing the bind-

ings (giver = John, recipient = Mary, give-object = Bookl).
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Figure 8. Pattern of activation after one period of oscillation
(with reference to the state of activation in Figure 7). This state
represents the dynamic bindings: (giver = John, recipient =
Mary, give-object = Bookl, owner = Mary, own-object =
Bookl). The system has essentially inferred the fact own(Mary,
Bockl).
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Figure 9. Pattern of activation after two periods of oscillation
(with reference to the state of activation in Fig. 7). This state
represents the dynamic bindings: (giver = John, recipient =
Mary, give-object = Bookl, owner = Mary, own-object =
Bookl, potential-seller = Mary, can-sell-object = Bookl). The
system has essentially inferred the facts own(Mary, Bookl) and
can-sell(Mary, Bookl).

The encoding of rules by the explicit encoding of the
inferential dependency between predicates and predi-
cate arguments, in conjunction with the use of temporal
synchrony, provides an efficient mechanism for propagat-
ing dynamic bindings and performing systematic reason-
ing. Conceptually, the proposed encoding of rules creates
a directed inferential dependency graph: Each predicate
argument is represented by a node in the graph, and each
rule is represented by links between nodes denoting the
arguments of the antecedent and consequent predicates.
In terms of this conceptualization, the evolution of the
system’s state of activity corresponds to a parallel breadth-
first traversal of the directed inferential dependency
graph. This means that (1) a large number of rules can fire
in parallel, and (2) the time taken to generate a chain of
inference is independent of the total number of rules and
just equals lm where | is the length of the chain of
inference and 7 is the period of oscillatory activity.

3.3. Encoding long-term facts: Memory as a temporal
pattern matcher

As stated in section 2.3, our system must also be capable
of representing long-term facts, which are essentially a
permanent record of a set of bindings describing a partic-
ular situation. The representation of a long-term fact
should encode the bindings pertaining to the fact in a
manner that allows the system to recognize rapidly dy-
namic bindings that match the encoded fact. Given that
dynamic bindings are represented as temporal patterns,
it follows that the encoding of a long-term fact should
behave like a temporal pattern matcher that becomes
active whenever the static bindings it encodes match the
dynamic bindings represented in the system’s state of
activation.

The design of such a temporal pattern matcher is
illustrated in Figures 10 and 11, which depict the encod-
ing of the long-term facts give(John, Mary, Bookl) and
give(John, Susan, x), respectively (the latter means “John




from John
from Mary
from Book1

Figure 10. Encodingof along-term fact: The interconnections
shown here encode the static bindings (giver-John, recipient =
Mary, give-object = Bookl) that constitute the long-term fact
give(John, Mary, Bookl). The pentagon-shaped nodes are t-and
nodes. A 1-and node becomes active if it receives an uninter-
rupted pulse train. The activation of e:give represents an exter-
nally or internally generated query asking whether the dynamic
bindings indicated by the pattern of activity of argument nodes
match the long-term knowledge encoded in the LTKB. The
activation of c:give represents an assertion by the system that
these dynamic bindings match the knowledge encoded in the
LTKB.

from John
from Mary

O

SOV eV gver  recip gobj

give
Figure 11. Encoding of the partially instantiated long-term
fact give( John, Mary, x), that is “John gave Mary something.”

The input from g-obj does not receive an inhibitory input from
any filler.

gave Susan something”). The encoding fully specifies how
a predicate is encoded. Observe that in addition to p-btu
nodes, the encoding also makes use of pentagon shaped
7-and nodes that have the following idealized behavior:

1. A t-and node becomes active on receiving an unin-
terrupted pulse train, that is, a pulse train such that the
gap between adjacent pulses is less than a spike width.
Thus a T-and node behaves like a temporal and node. On
becoming active, such - node produces an output pulse
train similar to the input pulse train.

2. Note that a 7-and node driven by a periodic input
consisting of a train of pulses of width comparable to the
period 1, will produce a periodic train of pulses of width
and periodicity m. We assume that a T-and node can
behave in this manner as long as the period of the input
pulse train lies in the interval [w,,,,, ©

min? lll4lx]‘
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3. A threshold, n, associated with a 7-and node indi-
cates that the node will fire only if it receives n or more .
synchronous pulse trains. If unspecified, n is assumed to
be one.

An n-ary predicate P is encoded by using two 1-and
nodes and n p-btu nodes. One of these t-and nodes is
referred to as the enabler and the other as the collector.
An enabler will be referred to as e:P and drawn pointing
upward whereas a collector will be referred to as c:P and
drawn pointing downward. With reference to Figures 10
and 11, the ternary predicate give is represented by the
enabler e:give, the collector c:give, and the three argu-
ment nodes - giver, recip, and g-obj. The representa-
tional significance of the enabler and collector nodes is as
follows. The enabler e:P of a predicate P has to be
activated whenever the system is queried about P. Such a
query may be posed by an external process or generated
internally by the system itself during an episode of rea-
soning (see sect. 4.4). On the other hand, the system
activates the collector c:P of a predicate P whenever the
dynamic bindings of the arguments of P match the knowl-
edge encoded in the LTKB.

A long-term fact is encoded using a t-and node which
receives an input from the enabler node of the associated
predicate. This input is modified by inhibitory links from
argument nodes of the associated predicate. If an argu-
ment is bound to an entity, the modifier input from the
argument node is in turn modified by an inhibitory link
from the appropriate entity node. The output of the t-and
node encoding a long-term fact is connected to the collec-
tor of the associated predicate. We will refer to the T-and
node associated with a long-term fact as a fact node. Note
that there is only one enabler node, one collector node,
and one set of argument nodes for each predicate. These
nodes are shared by all the long-term facts pertaining to
that predicate.

It can be shown that a fact node becomes active if and only if
the static bindings it encodes match the dynamic bindings
represented in the network’s state of activation. As stated above,
¢:P becomes active whenever any query involving the predicate
P is represented in the system. Once active, e:P outputs an
uninterrupted pulse train that propagates to various fact nodes
attached to e:P. Now the pulse train arriving at a fact node will be
interrupted by an active argument of P, unless the filler of this
argument specified by the long-term fact is firing in synchrony
with the argument. But a filler and an argument will be firing in
synchrony ifand only if they are bound in the dynamic bindings.
Thus a fact node will receive an uninterrupted pulse if and only if
the dynamic bindings represented in the system’s state of
activation are such that either an argument is unbound, or if
bound, the argument filler in the dynamic binding matches the
argument filler specified in the long-term fact. The reader may
wish to verify that the encodings given in Figures 10 and 11 will
behave as expected.

The encoding of the long-term fact give(John, Mary,
Bookl) will recognize dynamic bindings that represent
dynamic facts such as give(John, Mary, Bookl), give
(John, Mary, x), give(x, Mary, y), and give(x,y,z). How-
ever, it will not recognize those that represent give(Mary,
John, Bookl) or give(John, Susan, x). Similarly, the en-
coding of the long-term fact give(John, Susan, x) will
recognize dynamic bindings that encode give(John, Su-
san, x), give(x, Susan, y), and give(x, y, z), but not give(Su-
san, John, x) or give(John, Susan, Car7).

BEHAVIORAL AND BRAIN SCIENCES (1993) 16 3 427




“’

Shastri & Ajjanagadde: Association to reasoning

3.4. Dynamic bindings and temporal synchrony

Given the representation of dynamic bindings and the
encoding of rules described in the preceding sections,
one may view (1) reasoning as the transient but systematic
propagation of a rhythmic pattern of activation, (2) an
object in the dynamic memory as a phase in the above
rhythmic activity, (3) bindings as the in-phase firing of
argument and filler nodes, (4) rules as interconnection
patterns that cause the propagation and transformation of
such rhythmic patterns of activation, and (5) facts as
temporal pattern matchers. During an episode of reason-
ing, all the arguments bound to a filler become active in
the same phase as the filler, thereby creating transient
“temporal frames” of knowledge grouped together by
temporal synchrony. This can be contrasted with “static”
frames of knowledge where knowledge is grouped to-
gether, spatially, using hard-wired links and nodes.

The system can represent a large number of dynamic
bindings at the same time, provided the number of
distinct entities involved in these bindings does not ex-
ceed | m,,. /@ | , where m,,,, is the maximum period (or
the lowest frequency) at which p-btu nodes can sustain
synchronous oscillations and w is the width of the window
of synchrony. Recall that a window of synchrony of w
implies that nodes firing with a lag or lead of less than w/2
of one another are considered to be in synchrony. (We
discuss biologically plausible values of  and w in sect. 7.2
and the psychological implications of these limits in sect.
8.) As described thus far, the system allows the simul-
taneous representation of a large number of dynamic facts
but only supports the representation of one dynamic fact
per predicate. (In sect. 6 we discuss a generalization of the
proposed representation that allows multiple dynamic
facts pertaining to each predicate to be active simul-
taneously.)

Although synchronous activity is central to the repre-
sentation and propagation of binding, the system does not
require a global clock or a central controller. The propaga-
tion of in-phase activity occurs automatically — once the
system’s state of activation is initialized to represent an
input situation by setting up appropriate dynamic bind-
ings, the system state evolves automatically to represent
the dynamic bindings corresponding to situations that
follow from the input situation.

Reasoning is the spontaneous outcome of the system’s
behavior. The system does not encode syntactic rules of
inference such as modus ponens. There is no separate
interpreter or inference mechanism in the system that
manipulates and rewrites symbols. The encoding of the
LTKB is best viewed as a vivid internal model of the
agent’s environment. When the nodes in this model are
activated to reflect a particular situation in the environ-
ment, the model simulates the behavior of the external
world and dynamically creates a vivid model of the state of
affairs resulting from the given situation. The system is
clearly not a rule following system. At the same time it is
not rule described or rule governed in the sense that a
falling apple is. As Hatfield (1991) argues, the system is
best described as being rule instantiating.

3.5. From mechanisms to systems
The mechanisms proposed in the previous sections pro-
vide the building blocks for a connectionist svstem that
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can represent and reason with knowledge involving n-ary
predicates and variables. These mechanisms may interact
in different ways to realize different sorts of reasoning
behavior. For example, they can lead to a forward-
reasoning system that can perform predictive inferences.
Our discussion in the previous sections was in the context
of such a system.

The proposed mechanisms may also be used to create a
backward-reasoning system that behaves as follows: If the
system’s state of activation is initialized to represent a
query, it attempts to answer the query based on the
knowledge encoded in its LTKB. A backward-reasoning
system may be generalized to perform explanatory infer-
ences. If the state of such a system is initialized to
represent an input “situation,” it will automatically at-
tempt to explain this situation on the basis of knowledge
in its LTKB and a “minimal” set of assumptions.

With the aid of additional mechanisms it is possible
to design a system that performs both predictive and ex-
planatory inferences. Such a system would make predic-
tions based on incoming information and at the same time
seek explanations for, and test the consistency of, this
information.

4. A backward-reasoning system

This section describes a backward-reasoning system
based on the representational mechznisms described in
section 3. The system encodes facts and rules in its LTKB
and answers queries on the basis of this knowledge. For
example, if the system encodes rules Vx,y,.z [give(x,y,z) >
own(y,z)] and Vu,v [own(u,v) = can-sell(u,v)], and the
long-term fact “John bought Porsche7,” it will respond yes
to queries such as, Does John own Porsche7? or Can John
sell something? The time taken to respond yes to a query
is only proportional to the length of the shortest deriva-
tion of the query and is independent of the size of the
LTKB.

In subsequent sections we describe several extensions
of the backward-reasoning system. In section 5 we show
how the system may be combined with an IS-A hierarchy
that encodes entities, types (categories), and the
super-/subconcept relations between them. The aug-
mented system allows the occurrence of types, non-
specific instances of types, as well as entities in rules,
facts, and queries. This in turn makes it easier to encode
the appropriateness aspect of rules. An extension of the
system to perform abduction is described in Ajjanagadde
(1991).

4.1. The backward-reasoning system - a functional
specification

The reasoning system can encode rules of the form:17

Vx,. ..x, [P INPS.)..ANP(..)> 3z,
sz QL

The arguments of P;s are clements of {x,. x5, . . . x,,}. An
argument of Q is cither an element of {x;. x5, . . . x,}. or
an element of {z}, z5. . . . 3}, ora constant. It is required
that anv variable occurring in wultiple argument posi-
tions in the antecedent of a rale must also appear in the




consequent. !® The significance of this constraint is dis-
cussed in section 4.9. Additional examples of rules are:

Vx,y.t [omnipresent(x) > present(x,y,t)]

Anyone who is omnipresent is present everywhere at
all times;

Vx,y [born(x,y) = 3t present(x,y.t)]

Everyone must have been present at his or her birth-
place sometime.

Vx [triangle(x) > number-of-sides(x, 3)]

Vx,y [sibling(x,y) /\ born-together(x,y) > twins(x,y)]

Facts are assumed to be partial or complete instantia-
tions of predicates. In other words, facts are atomic
formulae of the form P(¢,,t,...t;), where ts are either
constants or distinct existentially quantified variables.
Some examples of facts are:

give(John, Mary, Bookl); John gave Mary Bookl.

give(x, Susan, Ball2); Someone gave Susan Ball2.
buy(John x); John bought something.
own(Mary, Balll); Mary owns Balll.
omnipresent(x); There exists someone who
is omnipresent.
triangle(A3); A3 is a triangle.

Susan and Mary are sib-
lings.
born-together(Susan, Susan and Mary were

Mary); born at the same time.

A query has the same form as a fact. A query, all of
whose arguments are bound to constants, corresponds to
the yes-no question, “Does the query follow from rules
and facts encoded in the long-term memory of the sys-
tem?” A query with existentially quantified variables,
however, has several interpretations. For example, the
query P(a,x), where a is a constant and x is an existentially
quantified argument, may be viewed as the yes-no query:
“Does P(a,x) follow from the rules and facts for some value
of x?” Alternatively this query may be viewed as the wh-
query: “For what values of x does P(a,x) follow from the
rules and facts in the system’s long-term memory?” Table
1 lists some queries, their interpretation(s), and their
answer(s).

In describing the backward reasoner we begin by
making several simplifying assumptions. We assume that
rules have a single predicate in the antecedent and that
constants and existentially quantified variables do not
appear in the consequents of rules. We also restrict
ourselves to yes-no queries at first. Subsequent sections
will provide the relevant details.

sibling(Susan, Mary);

4.2. Encoding rules and facts in long-term memory

Figure 12 depicts the encoding of the rules Vx,yz
(give(x,y,2) = own(y,z)]; Vx,y [buy(x,y) = own(x,y)}; and
Vx,y {own(x,y) = can-sell(x,y)], and the facts give(John,
Mary, Bookl), buy(John, x), and own(Mary, Balll).

As stated in section 3, a constant (i.e., an entity) is
represented by a p-btu node, and an n-ary predicate is
represented by a pair of T-and nodes and n p-btu nodes.
One of the 1-and nodes is referred to as the enabler and
the other as the collector. An enabler is drawn pointing
upward and is named e:{predicate-name). A collector is
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Table 1. Interpretation of some queries and their answers

yes-no form wh-form
Query (answer) (answer)
own(Mary,Balll) Does Mary own —
Balll?
(yes)
can-sell(Mary, Can Mary sell —
Bookl) Bookl?
(yes)
can-sell(Mary,x) Can Mary sell What can Mary
something? sell?
(yes) (Bookl, Balll)
own(x,y) Does someone Who owns
own something? something?
(yes) (Susan, Mary,
John)
What is owned by
someone?
(Bookl, Balll,
Ball2)
can-sell(John,x) Can John sell What can John
something? sell?
(yes) (something, but

don’t know what)

present(x,North-

Was someone pre-

Who was present

pole,1/1/89) sent at northpole  at northpole on

on 1/1/89? 1/1/89?

(yes) (There was some-
one, but don’t
know who)

number-of- Does A3 have 4 —_
sides(A3,4) sides?
(no)
can-sell(Mary, Can Mary sell —
Ball2) Ball2?

(no)
twins(Susan, Are Mary and Su- —
Mary) san twins?

(ves)

drawn pointing downwards and is named c:[predicate-
name]. The enabler, e:P, of a predicate P has to be
activated whenever the system is queried about P. As we
shall see, such a query may be posed by an external
process or generated internally by the system during an
episode of reasoning. On the other hand, the system
activates the collector, c:P, of a predicate P whenever the
current dynamic bindings of the arguments of P match the
long-term knowledge encoded in the system. Each fact is
encoded using a distinct 1-and node that is intercon-
nected with appropriate enabler, collector, argument,
and entity nodes (see sect. 3.3).

A rule is encoded by connecting (1) the collector of the
antecedent predicate to the collector of the consequent
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Figure 12. A network encoding the rules Vx,y,z [give(x, y, z)
> own(y, z)], Vx,y [buy(x, y) = own(x, y)], and Vx,y {own(x, y)
> can-sell(x, y)]; and the long-term facts give(John, Mary,
Bookl), buy(John, x), and own(Mary, Book2). The links be-
tween arguments are in the reverse direction because the rules
are wired for “backward reasoning.”

predicate, (2) the enabler of the consequent predicate to
the enabler of the antecedent predicate, and (3) the
argument nodes of the consequent predicate to the argu-
ment nodes of the antecedent predicate in accordance
with the correspondence between these arguments spe-
cified in the rule (see Fig. 12). Notice that the links are
directed from the arguments of the consequent predicate
to the arguments of the antecedent predicate. The direc-
tion of links is reversed because the system performs
backward reasoning.

4.3. Posing a query: Specifying dynamic bindings

A query is a (partially) specified predicate instance of the
form P(¢,, . . . , t,)?, where & are either constants (enti-
ties) or existentially quantified variables. Therefore, pos-
ing a query to the system involves specifying the query
predicate and the argument bindings specified in the
query. We will assume that only one external process
communicates with the reasoning system. The possibility
of communication among several modules is discussed in
section 10.4 (also see sects. 10.1-10.3). Let us choose an
arbitrary point in time - say, ¢, — as our point of reference
for initiating the query. The argument bindings specified
in the query are communicated to the network as follows:

1. Let the argument bindings involve m distinct enti-
ties: ¢, . . ., C,. With each c,, associate a delay 8, such
that no two delays are within  of one another and the
longest delay is less than 7 — w. Here w is the width of the
window of synchrony, and & lies in the interval [n
0

mint
".a:l']'

2. The argument bindings of an entity ¢, are indicated
to the svstem by providing an oscillatory spike train of
periodicity m starting at ¢, + §,, to ¢; and all arguments of
the query predicate bound to ¢;. As a result, a distinct
phase is associated with cach distinet entity introduced in
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the query and argument bindings are represented by the
synchronous activation of the appropriate entity and argu-
ment nodes.

3. The query predicate is specified by activating e:P,
the enabler of the query predicate P, with a pulse train of
width and periodicity 7 starting at time ¢,

Observe that posing a query simply involves activating
the enabler node of the query predicate and the argu-
ments and fillers specified in the query. There is no
central controller that monitors and regulates the behav-
ior of individual nodes at each step of processing.

4.4. The inference process for yes-no queries

Once a query is posed to the system, its state of activation
evolves automatically and produces an answer to the
query. The activation of the collector node of the query
predicate indicates that the answer to the query is ves.
The time taken by the system to produce a yes answer
equals 2n(! + 1), where 7 is the period of oscillation of
nodes and [ equals the length of the shortest derivation of
the query.19 If the collector node of the query predicate
does not receive any activation within 2(d + 1) periods of
oscillations, where d equals the diame! 7 the inferen-
tial dependency graph, the answer to - 1y is “don’t
know.” If we make the closed-world as- on,20 then a
don’t-know answer can be viewed as a ny answer.

We illustrate the inference process with the help of an
example (see Fig. 12). Consider the query can-selMary,
Bookl)? (i.e., Can Mary sell Book1?). This query is posed
by providing inputs to the entities Mary and Bookl, the
arguments p-seller, cs-obj, and the enabler e:can-sell, as
shown in Figure 13. Observe that Mary and -seller

coansel AV
c:own /S VvV VvV V
cgive / V V \¥ V

nl— /S VVVVV
awawl /S VVVVVV

g0ty ,——_—“—|L—“—”—“-—|L
woo | LU NN
etuy
b-obj
el LALLM N
a0wn
0-0bj
owner

ecansell |/ \4 \% V V V \'4 \ V
(v N N ) N | N O O O W
won | JULTL M NN T
vy LU L L
poie | TL_TL TL 1 LT JL I

input to c3-0bj
mpatopsener JL_T1_J1 JL_ ML M_T1 1N
muosoos [ J1L 1L T M NN N N J1
input to Mary JL_IL_]L_IL_.“_JI—”—IL_Jl—

¢ 4 4. 4
T T T T
L] ? a ® e

—
4 1 2 3 4 S
Figure 13, Activation trace for the query can-sellMary.
Book1)? (Can Mary sell Book1?). The query is posed by provid-
ing an oscillatory input to e:can-sell. Mary. Bookl. p-seller. and
cs-obj as shown. The activation of c:can-sell indicates a ves
answer.




receive synchronous activation and so do Bookl and cs-
obj. Let us refer to the phase of activity of Mary and
Bookl as phase-1 and phase-2, respectively.

As a result of the inputs, Mary and p-seller fire syn-
chronously in phase-1, whereas Bookl and cs-obj fire
synchronously in phase-2 of every period of oscillation.
The node e:can-sell also oscillates and generates a pulse
train of periodicity and pulse width w. The activations
from the arguments p-seller and cs-obj reach the argu-
ments owner and o-obj of the predicate own, and conse-
quently, starting with the second period of oscillation,
owner and 0-0bj become active in phase-1 and phase-2,
respectively. Thereafter, the nodes Mary, owner, and
p-seller are active in phase-1, whereas the nodes Bookl,
cs-obj, and o-obj are active in phase-2. At the same time,
the activation from e:can-sell activates e:own. At this point
the system has essentially created two dynamic bindings
- owner = Mary and own-object = Bookl. Given that
e:own is also active, the system’s state of activity now
encodes the internally generated query own(Mary,
Bookl1)? (i.e., Does Mary own Bookl?).

The fact node associated with the fact own(Mary, Balll)
does not match the query and remains inactive. Recall
that fact nodes are 1-and nodes and hence become active
only upon receiving an uninterrupted pulse train (see
sect. 3.3). Since Balll is not firing, the inhibitory activa-
tion from the argument node owner interrupts the activa-
tion going from e:own to the fact node and prevents it from
becoming active.

The activation from owner and 0-obj reaches the argu-
ments recip and g-obj of give, and buyer and b-obj of buy,
respectively. Thus beginning with the third period, argu-
ments recip and bugyer become active in phase-1, whereas
arguments g-obj and b-obj become active in phase-2. In
essence, the system has created new bindings for the
arguments of predicates can-sell and buy. Given that the
nodes e:buy and e:give are also active, the system’s state of
activity now encodes two additional queries: give(x, Mary,
Bookl1)? and buy(Mary, Bookl)?.

The fact node representing the fact buy(John, x) does
not become active because the activation from e:buy is
interrupted by the inhibitory activations from the argu-
ments buyer and b-obj. (Notice that John is not active.)
The fact node F1, associated with the fact give(John,
Mary, Bookl) however, does become active as a result of
the uninterrupted activation it receives from e:give. Ob-
serve that the argument giver is not firing and the inhibi-
tory inputs from the arguments recip and g-obj are
blocked by the synchronous inputs from Mary and Bookl1,
respectively. The activation from F1 causes c:give to
become active, and the output from c:give in turn causes
c:own to become active and transmit an output to c:can-
sell. Consequently c:can-sell, the collector of the query
predicate can-sell, becomes active, resulting in an affir-
mative answer to the query.

4.5. Encoding rules with constants and repeated variables
in the consequent

In this section we deseribe how rules containing constants
{entities) and/or existentially quantified variables in the conse-
quent are encoded. Consider the rule:

Val.x2.y [Pxd x2) = 3z Quel a2.y.z.0)] (&)}
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The encoding of rule (3) is shown in Figure 14. It uses a new type
of node, which we refer to as a 7-or node (node gl in Fig. 14).
Such a node behaves like a temporal or node and becomes active
on receiving any input above its threshold and generates an
oscillatory response with a period and pulse width equal to
0o the maximum period at which the p-btu nodes can sustain
synchronous activity.

Node gl projects inhibitory modifiers to links between argu-
ment and enabler nodes that can block the firing of the rule. The
node gl ensures that the rule participates in an inference only if
all the conditions implicit in the consequent of the rule are met.
The first condition concerns the occurrence of existentially
quantified variables in the consequent of a rule. Observe that
such a rule only warrants the inference that there exist some
filler of an existentially quantified argument and, hence, cannot
be used to infer that a specific entity fills such an argument.
Therefore, if an existentially quantified variable in the conse-
quent of a rule gets bound in the reasoning process, the rule
cannot be used to infer the consequent. With reference to rule
(3), the desired behavior is achieved by the link from the
existentially quantified (fourth) argument of Q to gl and the
inhibitory modifiers emanating from gl. The node gl will
become active and block the firing of the rule whenever the
fourth argument of Q gets bound to any filler.

The second condition concerns the occurrence of entities in
the consequent of a rule. Rule (3) cannot be used if its fifth
argument is bound to any entity other than a. In general, a rule
that has an entity in its consequent cannot be used if the
corresponding argument gets bound to any other entity during
the reasoning process. In the encoding of rule (3), this constraint
is encoded by link from the fifth argument of Q to gl that is in
turn modified by an inhibitory modifier from a. If the fifth
argument of Q gets bound to any entity other than a, gl will
become active and block the firing of the rule.

If the same variable occurs in multiple argument positions in
the consequent of a rule, it means that this variable should
either remain unbound or get bound to the same entity. This
constraint can be encoded by introducing a node that receives

Figure 14. Encoding rules with cxistentially quantified vari-
ables and constants in the consequent: The network encodes the
rule Yxl,x2,y [P(x1, x2) = 3z Q(x1, x2, y. z. a)]. This rule must
not fire during the processing of a query, if either the existen-
tially bound argument z gets bound., or the last argument gets
bound to a constant other than a. The node gl is a 1-or node. It
projects inhibitory modifiers that block the firing of the rule if
the above condition is violated.
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inputs from all the arguments that correspond to the same
variable, and becomes active and inhibits the firing of the rule
unless all such arguments are firing in synchrony. Observe that
due to the temporal encoding, arguments bound to the same
entity will fire in the same phase and, hence, a node need only
check that the inputs from appropriate argument nodes are in
synchrony to determine that the arguments are bound to the
same entity. Consider the network fragment, shown in Figure
15, that depicts the encoding of the rule Vx P(x) 3> Q(x,x.a). The
node g2 is like a T-or node except that it becomes active if it
receives inputs in more than one phase within a period of
oscillation. This behavior ensures that the firing of the rule is
inhibited unless the appropriate arguments are bound to the
same entity.

4.8. Encoding multiple antecedent rules

A rule with conjunctive predicates in the antecedent, that is, a
rule of theform Py(. . JAP,. . JA .. P . )DQ( . ) is
encoded using an additional T-and node that has a threshold of
m. The outputs of the collectors of P,, . . ., P,, are connected to
this node, which in turn is connected to the collector of Q. This
additional node becomes active if and only if it receives inputs
from the collector nodes of all the m antecedent predicates. The
interconnections between the argument nodes of the ante-
cedent and consequent predicates remain unchanged. Figure
16 illustrates the encoding of the multiple antecedent rule
Vx,yP(x,y) \ Q(y.x) > BR(x,y). The 1-and node labeled g3 has a
threshold of 2.

Q

Figure 15. Encoding rules where the same variable occurs in
multiple argument positions in the consequent: The network
encodes the rule Vx P(x) 2 Q(x, x, a). The rule must fire only ifa
multiply occurring variable is unbound, or all occurrences of the
variable are bound to the same constant. The node g2 is like a
7-or node except that it becomes active if it receives inputs in
more than one phase within a period of oscillation. On becoming
active it activates the 1-or node gl. The firing of gl blocks the
firing of the rule whenever the first and second arguments of Q
get bound to different constants. (The encoding also enforces
the constraint that the last argument of Q should not be bound to
any constant other than a.)
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Figure 16. The encoding of the rule Vx,yP(x, y) \ Q(y, 1) >
R(x, y). The 7-and node labeled g3 has a threshold of 2. Multiple
antecedent rules are encoded by using an additional 7-and node
whose threshold equals the number of predicates in the ante-
cedent. This node becomes active on receiving inputs from the
collector nodes of all the antecedent predicates.

4.7. Answering wh-queries

As stated in section 4.1, a query with unbound arguments
can be interpreted either as a yes-no query or a wh-query.
To answer a yes-no query the system need only determine
whether there exist some instantiations of the unbound
arguments. To answer a wh-query, however, the system
must also determine the instantiations of unbound argu-
ments for which the query is true. We describe how the
proposed system can be extended to do so.

Consider the proof of the query can-sell(Mary,x)? with
respect to the network shown in Figure 12. The yes-no
version of this query will be answered in the affirmative
and the two relevant facts own(Mary, Balll) and
give(John, Mary, Bookl) will become active. The answer
to the wh-query What can Mary sell? simply consists of
the entities bound to the arguments g-obj and b-obj,
respectively, of the two active facts. Observe that the
arguments g-obj and b-obj are precisely the arguments
that map to the unbound argument cs-obj of can-sell via
the rules encoded in the system. The system can extract
this information by the same binding propagation mecha-
nism it uses to map bound arguments. A straightforward
way of doing so is to posit an answer extraction stage that
occurs after the yes-no query associated with the wh-
query has produced a yes answer. For example, given the
query What can Mary sell? the system first computes the
answer to the yes-no query Can Mary sell something? and
activates the facts that lead to a yes answer, namely,
own(Mary, Balll) and give(John, Mary, Bookl). The
answer extraction stage follows and picks out the entities
Balll and Bookl as the answers.

In order to support answer extraction, the representa-
tion of a fact is augmented as shown in Figure 17. The
representation of a fact involving an n-ary predicate is
moadified to include n + 1 additional nodes: For each of
the n arguments there is a two-input p-btu node with a
threshold of 2. We refer to such a node as a binder node.
The other node (shown as a filled-in pointed pentagon) is
like a -and node except that once activated, it remains so
even after the inputs are withdrawn (for several periods of
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Figure 17. Augmented representation of a long-term fact in
order to support answer extraction. For each argument of the
associated predicate there exists a p-btu node with a threshold of
2. The node shown as a filled-in pentagon behaves like a 7-and
node except that once activated, it stays active for some time —
say about 20w - even after the inputs are withdrawn.

oscillations). This node, which we will refer to as a latch
node, receives an ANSWER input and an input from the
associated fact node.

At the end of the first stage, the fact nodes correspond-
ing to all the relevant facts would have become active. The
output of these nodes in conjunction with the ANSWER
signal will turn on the associated latch nodes and provide
one of the two inputs to the binder nodes. If the associated
yes-no query results in a yes answer (i.e., the collector of
the query predicate becomes active), the desired un-
bound arguments of the query predicate are activated in a
distinct phase. The activation of these arguments even-
tually leads to the activation of the appropriate arguments
in the facts relevant to answering the query. This provides
an input to the appropriate binder nodes of these facts.
Because the binder nodes were already receivingan input
from a latch node, they become active and produce an
output that activates the associated entities in phase with
the appropriate query arguments. The answer to the wh-
query (i.e., the entities that fill the argument q; of the
query) will be precisely those entities that are active in
phase with a,. The time taken by the answer extraction
step is bounded by the depth of the inferential depen-
dency graph.

4.8. Admitting function terms

The expressiveness and reasoning power of the system
can be extended by allowing restricted occurrences of
function terms in rules and facts. Function terms intro-
duce new entities during the reasoning process. But given
that entities are represented as a phase in the pattern of
activity, an entity introduced by a function term can be
represented by an additional phase in the rhythmic activ-
ity. Thus the reference to “mother-of(Tom)” during an
episode of reasoning should lead to activity in a distinct
phase. This phase would represent the “mother of Tom,”
and any arguments bound to the “mother of Tom” would
now fire in this phase. A provisional solution along these
lines is described by Ajjanagadde (1990).
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4.9. Constraints on the form of rules

The encoding of rules described thus far enforces (1) the
correspondence between the arguments of the anteced-
ent and consequent predicates in a rule, and (2) equality
among arguments in the consequent of a rule. In certain
cases, however, it is difficult for the backward-reasoning
system to enforce equality among arguments in the ante-
cedent of a rule. Consider the rule Vx,y P(x,x,y) = O(y)
and the query Q(a)?. The processing of this query will
result in the dynamic query P(?,7,a)? - where the first
and second arguments will be left unspecified. Conse-
quently, the system cannot enforce the condition implicit
in the rule that a long-term fact involving P should match
the query Q(a) only if its first and second arguments are
bound to the same constant. Performing such an equality
test is complicated in a system that allows multiple predi-
cates in the antecedent of rules and the chaining of
inference. Consider the rule Vx,y P(x,y) /\ R(x,y) > Q(y)
and the query Q(a)?. The predicates P and R may be
derivable from other predicates by a long sequence of rule
application. Hence to derive the query Q (a)? the system
may have to test the equality of arbitrary pairs of argu-
ment fillers in a potentially large number of facts distrib-
uted across the LTKB. It is conjectured that nonlocal and
exhaustive equality testing cannot be done effectively in
any model that uses only a linear number of nodes in the
size of the LTKB and time that is independent of the size
of the LTKB.

Contrast the situation described above with one
wherein the rule is Vx,y P(x,x,y) = Q(x) and the query is
Q(a)?. The dynamic query resulting from the processing
of the query Q(a)? will be P(a,a,y)?. Notice that now the
condition that the first and second arguments of P should
be the same is automatically enforced by the propagation
of bindings and is expressed in the dynamically generated
query at P. The crucial feature of the second situation is
that x, the repeated variable in the antecedent of the rule,
also appears in the consequent and gets bound in the
reasoning process. Thus, for the system to respond to a
query, any variable occurring in multiple argument posi-
tions in the antecedent of a rule that participates in the
answering of the query should also appear in the conse-
quent of the rule and get bound during the query-
answering process. This constraint is required in a
backward-reasoning system but not in a forward-
reasoning system. In the latter, the rule Vx,y,z P(x,y) N\
Q(y.2) > R(x,z) would be encoded as shown in Figure 18.
The 1-or node with a threshold of 2 receives inputs from
the two argument nodes that should be bound to the same
filler. It becomes active if it receives two inputs in the
same phase and enables the firing of the rule via inter-
mediary p-btu and 7-and nodes. This ensures that the
rule fires only if the second and first arguments of P
and Q, respectively, are bound to the same filler. In
the case of forward reasoning, a rule that has variables
occurring in multiple argument positions in its conse-
quent can participate in the reasoning process provided
such variables also appear in its antecedent and get bound
during the reasoning process. The restrictions mentioned
above on the form of rules exclude certain inferences
(we discuss these exclusions and their implications in

sect. 8.2).
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Figure 18. Encoding a rule with repeated variables in the
antecedent within a forward reasoning system. The figure shows
the encoding of the rule Vx,y,z P(x, y) \ (y, z) > R(x, z). This
rule should fire only if the two arguments in the antecedent
corresponding to variable y get bound to the same constant. The
1-or node with a threshold of 2 receives inputs from the two
argument nodes that should be bound to the same filler. It
becomes active if it receives two inputs in the same phase and
enables the firing of the rule via intermediary p-btu and 7-and
nodes. These nodes have suitable thresholds.

5. Integrating the rule-based reasoner
with an /S-A hierarchy

The rule-based reasoner described in the previous sec-
tion can be integrated with an IS-A hierarchy represent-
ing entities, types (categories), the instance-of relations
between entities and types, and the super-/subconcept
relations between types. For convenience, we will refer
to the instance-of, superconcept, and subconcept rela-
tions collectively as the IS-A relation. The augmented
system allows the occurrence of types as well as entities in
rules, facts, and queries. Consequently, the system can
store and retrieve long-term facts such as “Cats prey on
birds” and “John bought a Porsche” that refer to types (Cat
and Bird) as well as nonspecific instances of types (a
Porsche). The system can also combine rule-based reason-
ing with type inheritance. For example, it can infer “John
owns a car’ and “Tweety is scared of Sylvester” (the latter
assumes the existence of the rule “If x preys-on y then y is
scared of x” and the IS-A relations “Sylvester is a Cat” and
“Tweety is a Bird"). Combining the reasoning system with
an IS-A hierarchy also facilitates the representation of the
appropriateness aspect of a rule. Recall that appropriate-
ness concerns the applicability of the systematic aspect of
a rule in a given situation, depending on the types of
argument fillers involved in that situation. As we shall
see, the augmented system allows knowledge in the IS-A
hierarchy to interact with the encoding of the systematic
aspects of a rule in order to enforce type restrictions and
type preferences on argument fillers. .

The integration of the reasoner with the 15-A hierarchy
described below is a first cut at enriching the representa-
tion of rules. We only model the instance-of, subconcept,
and superconcept relations and suppress several issues
such as a richer notion of semantic distance, frequency-
and category-size effects, and prototypicality (e.g., see
Lakoff 1987).

Figure 19 provides an overview of the encoding and rea-
soning in the integrated reasoning system. The rule-base
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Figure 19. Interaction between a rule-based reasoner and an
IS-A hierarchy. The rule component encodes the rule Vx,y
preys-on(x, y) = scared-of(y, x) and the facts Vx:Cat, y:Bird
preys-on(x, y), and 3x:Cat Vy:Bird loves(x, y). The first fact is
equivalent to preys-on(Cat, Bird) and states that cats prey on
birds. The second fact states that there is a cat that loves all
birds.

part of the network in Figure 19 encodes the rule Vx,y
[preys-on(x,y) = scared-of(y,x)], and the facts Vx:Cat,
y:Bird preys-on(x,y) and 3x:Cat, Vy:Bird loves(x.y).

The first fact says “cats prey on birds™ and is equivalent
to preys-on(Cat, Bird). The second fact states “there
exists a cat that loves all birds.” The type hierarchy in
Figure 19 encodes the 1S-A relationships: is-a{Bird, Ani-
mal), is-a(Cat, Animal), is-a(Robin, Bird), is-a(Canary,
Bird), is-a(Tweety, Canary), is-a(Chirpy, Robin), and is-
a(Sylvester, Cat). Facts involving typed variables are
encoded in the following manner: A typed, ‘universally
quantified variable is treated as being equivalent to its
type. Thus Vx:Cat, y:Bird preys-on(x,y) is encoded as
preys-on(Cat, Bird). A typed, existentially quantified
variable is encoded using a unique subconcept of the
associated type. Thus in Figure 19, 3x:Cat Vy:Bird
loves(x,y) is encoded as loves(Cat-1, Bird), where Cat-1 is
some unique instance of Cat. In its current form, the
system only deals with facts and queries wherein all
existential quantifiers occur outside the scope of universal
quantifiers.

For now let us assume that (1) each concept?! (type or
entity) in the IS-A hierarchy is encoded as a p-btu node,
(2) each IS-A relationship, say is-a(A, B), is encoded using
two links — a bottom-up link from A to B and a top-down
link from B to A, and (3) the top-down and bottom-up
links can be enabled selectively by built-in, automatic
control mechanisms. How this is realized is explained in
section 5.2.

The time course of activation for the query scared-
of{ Tweety, Sylvester)? (Is Tweety scared of Sylvester?) is
given in Figure 20. The query is posed by turning on
e:scared-of and activating the nodes Tweety and Sylvester
in synchrony with the first and second arguments of
scared-of. respectively. The bottom-up links emanating
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Figure 20. Activation trace for the query scared-of{Tweety,
Sylvester)?, (i.e., Is Tweety scared of Sylvester?).

from Tweety and Sylvester are also enabled. The activa-
tion spreads along the IS-A hierarchy, and eventually
Bird and Cat start firing in synchrony with Tweety and
Sylvester, respectively. At the same time, the activation
propagates in the rule base. As a result, the initial query
scared-of{ Tweety, Sylvester)? is transformed into the
query preys-on(Cat, Bird)?, which matches the stored
fact preys-on(Cat, Bird) and leads to the activation of
c¢:preys-on. In turn c:scared-of becomes active and signals
an affirmative answer.

There are advantages to expressing certain rules as
facts. Although the reasoning system described in section
4 can use rules to draw inferences, it cannot retrieve the
rules per se; for knowledge to be retrievable, it must be in
the form of a fact. Hence integrating the rule-based
reasoner with an IS-A hierarchy has added significance,
because it allows certain rulelike knowledge to be ex-
pressed as facts, thereby making it retrievable in addition
to being usable during inference. Consider “Cats prey on
birds.” The rule-based reasoner can only express this as
the rule Vx, y Cat(x) /\ Bird(y) = preys-on(x,y) and use it
to answer queries such as preys-on(Sylvester, Tweety)?.
It, however, cannot answer queries such as preys-on(Cat,
Bird)? that can be answered by the integrated system.

5.1. Some technical problems

Two technical problems must be solved in order to inte-
grate the IS-A hierarchy and the rule-based component.
First, the encoding of the IS-A hierarchy should be
capable of representing multiple instantiations of a con-
cept. For example, in the query discussed above, the
concept animal would receive activation originating at
Tweety as well as Sylvester. We would like the network’s
state of activation to represent both the animal Tweety
and the animal Sylvester. This cannot happen if concepts
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are represented by a single p-btu node because the node
animal cannot fire in synchrony with both Tweety and -
Sylvester at the same time. Second, the encoding must
provide built-in mechanisms for automatically controlling
the direction of activation in the 1S-A hierarchy so as to
deal correctly with queries containing existentially and
universally quantified variables. The correct treatment of
quantified variables — assuming that all IS-A links are
indefeasible, that is, without exceptions22 — requires that
activation originating from a concept C that is either an
entity or the type corresponding to a universally quan-
tified variable in the query should propagate upwards to
all the ancestors of C. The upward propagation checks if
the relevant fact is universally true of some superconcept
of C. The activation origination from a concept C that
appears as an existentially quantified variable in the query
should propagate to the ancestors of C, the descendants of
C, as well as the ancestors of the descendants of C.23 A
possible solution to these problems has been proposed by
Mani and Shastri (1991) and is outlined below.

5.2. Encoding of the I1S-A hierarchy

Each concept C represented in the IS-A hierarchy is
encoded by a group of nodes called the concept cluster for
C (see middle of Fig. 21). The concept cluster for C has k,
banks of p-btu nodes, where k, is the multiple instantia-
tion constant and refers to the number of dynamic instan-
tiations a concept can accommodate. In general, the value
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Figure 21. Structure of the concept cluster for C and its
interaction with the bottom-up and top-down switches. The
cluster has three banks of nodes and is capable of storing up to
three distinct instances of the concept (in other words, the
multiple instantiation constant k; cquals three). The ; and |
relay nodes have a threshold of 2.
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of k; may vary from concept to concept, but for ease of
exposition we will assume that it is the same for all
concepts. In Figure 21, k, is three. Each bank of concept
C consists of three p-btunodes: C;, C;, C;, . EachC;can
represent a distinct (dynamic) instantiation of C. The relay
nodes C,; and C,; control the direction of the propaga-
tion of activation from C,. The nodes C,; and C,, Lave a
threshold of two. Note that C, is connected to C;4 and
C;,.and C; is linked to C,;.

Every concept C is associated with two subnetworks -
the top-down and bottom-up switches. These switches
are identical in structure and automatically control the
flow of activation to the concept cluster. A switch has k,
outputs. Qutput; (1 < i < k) from the bottom-up switch
connects to C; and C;;, whereas output; from the top-
down switch goes to nodes C, and C; . the bottom-up
switch has k;n,,;, inputs and the top-down switch has
k;n,,, inputs, where n,,;, and n,,, are the number of sub-
and superconcepts of C, respectively. There are also links
from the C; nodes to both switches. The interaction
between the switches and the concept cluster brings
about efficient and automatic dynamic allocation of banks
in the concept cluster by ensuring that (1) activation gets
channeled to the concept cluster banks only if any “free”
banks are available, and (2) each instantiation occupies
only one bank.

The architecture of the switch (with k, = 3) is illustrated in
Figure 22. The k, p-btu nodes, S,, . . ., S,, with their associ-
ated 7-or nodes form the switch. Inputs to the switch miake two
connections — one excitatory and one inhibitory — to each of
S2. -+ -, Sk, As a result of these excitatory-inhibitory connec-

tions, nodes S,, . . ., Sk, are initially disabled and cannot
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Figure 22.  Architecture of a switch that mediates the flow of

activation into concept clusters. The depicted switch assumes
that the associated cluster can represent up to three instances.
The switch provides a built-in and distributed control mecha-
nism for automatically allocating banks within a concept cluster.
Each distinct incoming instantiation is dirccted to a distinet
bank. provided one is available.

436 BEHAVIORAL AND BRAIN SCIENCES (1993) 16 3

respond to incoming activation. Any input activation only affects
node §,, because the switch inputs directly connect to S,. S,
becomes active in response to the first available input and
continues to fire in phase with the input as long as the input
persists. As S, becomes active, the 7-or node associated with §,
turns on and enables S,. However, inhibitory feedback from C,
ensures that S, is not enabled in the phase in which C, is firing.
Thus S, can start firing only in a different phase. Once S, starts
firing, S, gets enabled, and so on.

Note that C, could receive input in two phases, one from its
bottom-up switch and another from its top-down switch. C,.
being a p-btu node, fires in only one of these phases. At any
stage, if C,, 1 =i < k, picks up activation channeled by the other
switch, feedback from C, into the 1-or node associated with §,
causes S;,, to become enabled, even though §; may not be
firing. The net result is that as instantiations occur in the concept
cluster, the p-btu nodes in the switch get enabled, in turn, from
left to right in distinct phases.

An IS-A relation of the form is-a(A, B) is represented as
shown in Figure 23 by (1) connecting the A, ., i=1,. ..k,
nodes to the bottom-up switch for B, and (2) connectingthe B, | ,
i=1,...,k; nodes to the top-down switch for A.

Consider a concept C in the IS-A hierarchy. Suppose C,
receives activation from the bottom-up switch in phase p. In
response, C, starts firing in synchrony with this activation. The
C,; node now receives two inputs in phase p (one from the
bottom-up switch and another from C;; see Fig. 21). Since it has
a threshold of 2, C,; also starts firing in phase p. This causes
activation in phase p to eventually spread to the superconcept of
C. Hence any upward-traveling activation continues to travel
upward, which is the required behavior when C is associated
with a universally typed variable. Similarly, when C; reccives
activation from the top-down switch in phase p, both C,and C,
become active in phase p. C,; soon follows suit because of the
link from C, ; to C,, . Thus eventually the whole i bank starts
firing in phase p. This built-in mechanism allows a concept
associated with an existentially typed variable to eventually

A
Representation

top-down
bottom-up switch for A
switch for A

Figure 23.  Encoding of the 1S-A velation is-ae A. B A bundle
of k, links is shown as a single link.




sproad its activation to its ancestors, descendants, and ancestors
of descendants. The switching mechanism introduces an extra
delay in the propagation of activation along IS-A links and,
typically, the switch takes three steps to channel the activation.
In the worst — and also the least likely - case, the switch may
take up to eight steps to propagate activation.

The time taken to perform inferences in the integrated
system is also independent of the size of the LTKB and is
proportional only to the length of the shortest derivation of the
query. The time taken to perform a predictive inference is
approximately [,w + 3l;m, where [, and [; are the lengths of the
shortest chain of rules, and the shortest chain of IS-A links,
respectively, that must be traversed in order to perform the
inference. The time required to answer a yes-no query is
approximately max(!,mw, 3lyw) + |;m + 2w .34

§.3. Typed variables In queries

Consider a query P(. . . , x, . . .)?, where the jt» argu-
ment is specified as a typed variable x. If x is universally
quantified, that is, the query is of the form Vx: C P(. . .,
X, ...), C,and C,, are activated in phase with the jth
argument node of II (the subscript i refers to one of the
banks of C). If x is existentially quantified, that is the
queryisoftheform3x:CP(. . .,x, .. .), C,andC,, are
activated in phase with the jth argument node of P. As
before (sect. 4.3), an untyped variable in a query is not
activated. Simple queries of the type is-a(C, D)? are
posed by simply activating the nodes C; and C;; and
observing whether one or more D;s become active.

5.4. Encoding appropriateness as type restrictions on
argument fillers

The 1S-A hierarchy can be used to impose type restric-
tions on variables occurring in rules. This allows the
system to encode context-dependent rules that are sensi-
tive to the types of the argument fillers involved in
particular situations. Figure 24 shows the encoding of the
following rule in a forward-reasoning system: Vx:animate,
y:solid-obj walk-into(x,y) > hurt(x) (i.e., If an animate
agent walks into a solid object, the agent gets hurt). The
types associated with variables specify the admissible
types (categories) of fillers, and the rule is expected to fire
only if the fillers bound to the arguments are of the
appropriate type. The encoding makes use of 7-or nodes
that automatically check whether the filler of an argument
is of the appropriate type. Thus the 7-or node a in Figure
24 would become active if and only if the first argument of
walk-into is firing in synchrony with animate, indicating
that the filler of the argument is of type animate. Sim-
ilarly, the t-or node b would become active if and only if
the second argument of walk-into is firing in synchrony
with solid-object, indicating that the filler of this argu-
ment is of type solid-object. The activation of nodes a and
b would enable the propagation of activity from the
antecedent to the consequent predicate. In a forward
reasoner, typed variables are allowed only in the anteced-
ent of the rule.

In the backward reasoner, typed variables are allowed
only in the consequent of a rule. The encoding of a typed
universallv quantified vuriable in the consequent is simi-
lar to the encoding of an entity in the consequent of a rule
explained in section 4.5 (sce Fig. 14). Instead of originat-
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Figure 24. Encoding rules with typed variables: The network
fragment encodes the rule Vx : animate,y : solid-obj walk-into(x,
y) > hurt(x). The numbers associated with nodes denote
thresholds (only thresholds other than 1 have been indicated
explicitly). The 1-or node a (b) become active if and only if the
first (second) argument node of walk-into fires in synchrony with
the concept animate (solid-obj). Once active, these nodes en-
able the propagation of binding to the predicate hurt. Thus type
restrictions are enforced using temporal synchrony.

ing at an entity, the inhibitory link originates at the
concept representing the type of the universally quan-
tified variable. The encoding of a typed existentially
quantified variable is similar to that of a typed universally
quantified variable except that the inhibitory link origi-
nates from a unique subconcept of the associated concept
{for details refer to Mani & Shastri 1991).

The rule V x:animate, y:solid-obj walk-into(x,y) > hurt(x) is
logically equivalent to the rule V x,y animate(x) /\ solid-obj(y) /\
walk-into(x,y) > hurt(x). Thus it would appear that the IS-A
hierarchy is not essential for encoding type restrictions on rules.
Note, however, that although the former variant has only one
predicate in the antecedent, the latter has three. This increase
in the number of antecedent predicates can be very costly,
especially in a forward-reasoning system capable of supporting
multiple dynamic predicate instantiations (Mani & Shastri
1992). In such a system, the number of nodes required to encode
arule is proportional to k2 where k, is the bound on the number
of times a predicate may be instantiated dynamically during
reasoning (see sect. 6), and m equals the number of predicates in
the antecedent of the rule. Thus it is critical that m be very
small. The IS-A hierarchy plays a crucial role in reducing the
value of m by allowing restrictions on predicate arguments to be
expressed as type restrictions.25

5.5. Encoding soft and defeasible rules

The proposed solution to the binding problem can be
generalized to soft/defeasible rules. Observe that the
strength of dynamic bindings may be represented by the
degree of synchronization between an argument and a
filler (this possibility was suggested by Jed Harris, per-
sonal communication). Such a scheme becomes plausible
if each argument is encoded by an ensemble of nodes (see
sect. 7.3), for then the degree of coherence in the phase of
firing of nodes within an argument ensemble can indicate
the strength of the binding the argument is participating
in. In the limiting case, a highly dispersed activity in an
argument ensemble may mean that the argument is
bound to one of the active entities, although it is not clear
which (Shastri 1993a).26

In addition to specifying a mechanism for representing
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the strength of dynamic bindings and rule firing, we also
need to specify the basis for computing these strengths. It
is customary to view the strength of a rule as a numerical
quantity associated with a rule (e.g., certainty factors in
MYCIN; Buchanan & Shortliffe 1984). Such as “atomic” and
uninterpreted view of the strength of a rule is inadequate
for modeling rules involving n-ary predicates. Our ap-
proach involves defining the “strength” of a rule (and
similarly, the strength of a binding) to be a dynamic
quantity that depends upon the types/features of the
entities bound to arguments in the rule at the time of rule
application. Such a strength measure also generalizes the
notion of type restrictions on rules to type preferences on
rules. Thus instead of rules of the form Vx : animate, y :
solid-obj walk-into(x,y) = hurt(x), the system can encode
rules of the form:

Vx,y walk-into(x,y) = [with strength
o(type(x) type(y))] = hurt(x),

where the strength of the rule may vary from one situation
to another as a function, @, of the types of the argument
fillers in a given situation. Observe that the value of oft;,
t;) need not be known for all types ¢, and ¢, in the IS-A
hierarchy, and may be inherited. For example, if o(t;, ¢,)
is not known but a{t,,, ¢,,) is, and ¢, and t, are subtypes of
t,, and t,,, respectively, then o(t,,, t,) can be used in place
of a(t;, ty). This is analogous to property inheritance in an
I1S-A hierarchy, where property values may be attached to
just a few concepts and the property values of the rest of
the concepts inferred via inheritance. The proposed
treatment would allow the system to incorporate excep-
tional and default information during reasoning. This
relates to Shastri’s (1988a; 1988b) work on a connectionist
semantic network (see sect. 9.2).

6. Representing muitipie dynamic instantiations
of a predicate

The representation of dynamic bindings described thus
far cannot simultaneously represent multiple dynamic
facts about the same predicate. The proposed representa-
tion can be extended to do so by generalizing the scheme
for encoding multiple instantiations of concepts outlined
in section 5.2. The extension assumes that during an
episode of reflexive reasoning each predicate can be
instantiated only a bounded number of times. In general,
this bound may vary across predicates and some critical
predicates may have a marginally higher bound. For ease
of exposition, however, we will assume that this bound is
the same for all predicates and refer to it as k,. The ability
to handle multiple instantiations of the same predicate
allows the system to deal with more complex inferential
dependencies, including circularities and bounded recur-
sion. The system can make use of rules such as Vx,y
sibling (x,y) = sibling (y,x). A forward-reasoning system
can use a rule such as Vx,y,z greater (x,y) /\ greater(y,z)
= greater (x,z)and infer “a is greater than ¢” on being told
“a is greater than b” and “b is greater than ¢.”

Since up to k, dynamic instantiations of a predicate may
have to be represented simultaneously, the representa-
tion of an n-ary predicate is augmented so that each
predicate is represented by ky hanks of nodes, with each
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bank contamning a collector, an enabler, and n argument
nodes. For a given predicate, P, the enabler of the ith bank
e:P will be active whenever the ith bank has been instanti-
ated with sone dynamic binding. The collector ¢:P, of the
ith bank will be activated whenever the dynamic bindings
in the i* bank match the knowledge encoded in the
LTKB. Figure 25 depicts the encoding of two binary
predicates P and Q and a ternary predicate R.

Given that a predicate is represented using multiple
banks of predicate and argument nodes, the connections
between arguments of the antecedent and consequent
predicates of a rule have to be mediated by a “switching”
mechanism similar to the one described in section 5.2.
The switch automatically channels input instantiations
into available banks of its associated predicate. It also
ensures that each distinct instantiation occupies only one
bank, irrespective of the number of conzequent predi-
cates that may be communicating this instantiation to the
switch,

With the inclusion of the switch in the backward rea-
soning system, the number of nodes required to repre-
sent a predicate and a long-term fact becomes propor-
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Figure 25. The encoding of predicates for accommodating
multiple instantiations: P and Q are binary predicates and R is a
ternary predicate. The encoding assumes that any predicate
may be instantiated at most three times (i.c., the multiple
instantiation constant k, = 3). An n-ary predicate is represented
by k, banks of nodes. The connections suggest that there are two
rules, one of the form P{) = Q() and the other of the form P() >
R() (the argument correspondence is not shown). The connec-
tions between antecedent and consequent predicates of a rule
are mediated by a “switching” mechanism similar to the one
described in Figure 22. The switch for P automatically channels
incoming instantiations of P into available banks of P. The switch
has k, output “cables,” where each cable consist: of output links
to a predicate bank of . The inputs to the switch are cables from
banks of predicates that are in the consequent of rules in which P
occurs in the antecedent.




tional to k; and the number of nodes required to encode a
rule becomes proportional to k§. Furthermore, the time
required for propagating multiple instantiations of a pred-
icate increases by a factor of k,. Thus there are significant
space and time costs associated with multiple instantia-
tion of predicates. The complete realization of the switch

and its interconnection is described in Mani and Shastri
(1992).

7. Biological plausibility

Recent neurophysiological data suggest that synchro-
nous, rhythmic activity occurs in the brain and that the
time course of such activity is consistent with the require-
ments of reflexive reasoning. The data also provide evi-
dence in support of the hypothesis that the cat visual
system solves the dynamic-binding problem by using
temporal synchrony.

7.1. Neurophysiologi. al support

There is considerable evidence for the existence of rhyth-
mic activity in the animal brain. Synchronous activity has
been documented for some time in the olfactory bulb,
hippocampus, and the visual cortex (Freeman 1981; Ger-
stein 1970; MacVicar & Dudek 1980; Toyama et al. 1981).
The most compelling evidence for such activity, however,
comes from findings of synchronous oscillations in the
visual cortex of anesthetized cats responding to moving
visual stimuli (Eckhorn et al. 1988; 1990; Engel et al.
1991; Gray & Singer 1989; Gray et al. 1989; 1991). These
findings are based on the correlational analysis of lucal
field potentials and multiunit, as well as single-unit,
recordings. Recently, similar activity has also been re-
ported in an awake and behaving monkey (Kreiter &
Singer 1992).27 Relevant aspects of the experimental find-
ings are summarized below:

1. Synchronous oscillations have been observed at fre-
quencies ranging from 30 to 80 Hz (a typical frequency is
around 50 Hz).

2. Synchronization of neural activity can occur within a
few periods (sometimes even one period) of oscillations
(Gray et al. 1991).

3. In most cases synchrenization occurs with a lag or
lead of less than 3 msec, although in some cases it even
cccurs with precise phase locking (Gray et al. 1991).

4. Synchronization of neural activity occurs (a) be-
tween local cortical cells (Eckhorn et al. 1988; Gray &
Singer 1989), (b) among distant cells in the same cortical
area (Gray et al. 1989), (c) among cells in two different
cortical areas — for example, areas 17 and 18 (Eckhorn et
al. 1988) and areas 17 and PMLS (Engel et al. 1991), and
(d) among cells across the two hemispheres (Engel et al.
1991).

5. Once achieved, synchrony may last several hundred
msec (Gray et al. 1991).

The synchronous activity observed in the brain is a
complex and dynamic phenomenon. The frequency and
degree of phase locking varies considerably over time and
the synchronization is most robust when viewed as a
property of groups of neurons. The nature of synchronous
activity assumed by our model is an idealization of such a
complex phenomenon (but see seets. 7.3 & 10.1-10.4).
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7.1.1. Temporal synchrony and dynamic bindings in the
cat visual cortex. Neurophysiological findings also sup-
port the hypothesis that the dynamic binding of visual
features pertaining to a single object may be realized by
the synchronous activity of cells encoding these features
(see Eckhorn et al. 1990; Engel et al. 1991). In one
experiment, multiunit responses were recorded from
four different sites that had overlapping receptive fields
but different orientation preferences — 1579, 679, 229, and
909, respectively. A vertical light bar resulted in a syn-
chronized response at sites 1 and 3, whereas a light bar
oriented at 670 led to a synchronized response ai sites 2
and 4. A combined stimulus with the two light bars
superimposed led to activity at all the four sites, but
although the activity at sites 1 and 3 was synchronized and
that at sites 2 and 4 was synchronized, there was no
correlation in the activity across these pairs of sites (Engel
etal. 1991). Such experimental evidence suggests that the
synchronous activity in orientation specific cells may be
the brain’s way of encoding that these cells are participat-
ing in the representation of a single object. This is analo-
gous to the situation in Figure 9, wherein the syn-
chronous activity of the nodes recip, owner, and cs-seller
in phase with Mary is the system’s way of encoding that all
these roles are being filled by the same object, Mary.

7.2. Some neurally plausible values of system
parameters

The neurophysiological data cited above also provide a
basis for making coarse but neurally plausible estimates of
some system parameters. The data indicate that plausible
estimates of ,,, and m,,, may be 12 and 33 msec,
respectively, and a typical value of # may be 20 msec. The
degree of synchronization varies from episode to episode,
but a conservative estimate of w, the width of the window
of synchrony, may be derived on the basis of the cumula-
tive histogram of the phase difference (lead or lag) ob-
served in a large number of synchronous events. The
standa: d deviation of the phase differences was 2.6 msec
in one data set and 3 msec in another (Gray et al. 1991).
Thus a plausible estimate of w may be about 6 msec.
Given that the activity of nodes can get synchronized
within a few cycles, sometimes even within one, and
given the estimates of m,,,, and =, it is plausible that
synchronous activity can propagate from one p-btu node
to another in about 50 msec. The data also suggest that
synchronous activity lasts long enough to support epi-
sodes of reflexive reasoning requiring several steps.

7.3. Propagation of synchronous activity — a provisional
model

Our system requires the propagation of synchronous
activity over interconnected nodes in spite of nonzero and
noisy propagation delays. The neurophysiological evi-
dence cited in the previous sections suggest that such
propagation occurs in the cortex. The exact neural mecha-
nisms underlying the propagation of such activity, how-
ever, remain to be determined. Abeles (1982; 1991) has
argued, on the basis of anatomical and physiological data,
theoretical analysis, and simulation results that syn-
chronous activity can propagate over chains of neurons
connected ina manv-to-many tashion (synfire chains) with
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a small and stable “jitter,” even if random fluctuations are
taken into account. Bienenstock (1991) has examined how
synfire chains may arise in networks as a result of learn-
ing. Below we outline a provisional model (Mandelbaum
& Shastri 1990) that demonstrates that synchronized
activity can propagate in spite of noisy propagation de-
lays. The model is meant to demonstrate the feasibility of
such propagation and should not be viewed as a detailed
neural model.

We assume that each argument in the reasoning system
is represented by an ensemble of n nodes rather than just
a single node. Connections between arguments are en-
coded by connecting nodes in the appropriate ensembles:
Ifensemble A connects to ensemble B, then each node in
A is randomly conitected to m nodes in B (m < n). Thus,
on average, each node in B receives inputs from m nodes
in A (see Fig. 26) and has a threshold comparable to m.
The propagation delay between nodes in two different en-
sembles is assumed to be noisy and is modeled as a
Gaussian distribution. If ensemble A is connected to
ensemble B and nodes in ensemble A are firing in syn-
chrony, then we desire that within a few periods of
oscillation nodes in ensemble B start firing in synchrony
with nodes in ensemble A.

Nodes within an ensemble are also sparsely intercon-
nected, with each node receiving inputs from a few
neighboring nodes within the ensemble. Synchronization
within an ensemble is realized as a result of the interac-
tion between the feedback received by a node from its
neighbors within the ensemble. The model makes use of
the negative slope of the threshold-time characteristic
during the relative refractory period (RRP) to modulate
the timing of the spike generated by a node. Observe that
a higher excitation can hasten, while a lower excitation
can delay, the firing of a node. At the same time, the lag

can-sell

Figure 26.  Individual p-btu nodces are replaced by an ensem-
ble of such nodes. A connection between a pair of individual
p-btu nodes is replaced by a number of random interensemble
connections. Nodes within an ensemble can communicate with
their immediate neighbors in the ensemble and the intracn-
semble propagation delays are assumed to be much smaller than
the interensemble propagation delavs
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between the firing times of nodes in two connected
ensembles due to the mean propagation delay is partially
offset by the interaction between the various parameters
of the system enumerated below.

The thresnold-time characteristic of a node and the
distribution of the arrival times of input spikes from a
preceding ensemble are illustrated in Figure 27. After
firing, a node enters an absolute refractory period (ARP),
in which its threshold is essentially infinite. The ARP is
followed by a decaying RRP, during which the thresh-
old decays to its resting value. During the RRP, the
threshold-time characteristic is approximated as a straight
line of gradient g (a linear approximation is not critical).
The incoming spikes from a preceding ensemble arrive
during a node’s ARP and the early part of its RRP. It is
assumed that immediate neighbors within an ensemble
can rapidly communicate their potential to each other.

A node’s potential is the combined result of the interen-
semble and intraensemble interactions and in the period
between spikes is modeled as

Pt + At) = P{t) + Inft) + o * Z[P(t) — P[1)],

where P{t) is the potential of node i at time ¢. The change
in potential is caused by Iny¢), the input arriving at node i
from nodes in the preceding ensemble as well as the
difference in the potential of i and that of its immediate
neighbors j. In the simulation, j ranged over six immedi-
ate neighbors of i. If nodes i and j are immediate neigh-
bors and i is firing ahead of j, then we want i to hasten the
firing of j by sending it an excitatory signal and j to delay
the firing i by sending it an inhibitory signal. Doing so
would raise the potential of j, causing it to fire early, and
lower the potential of é, causing it to fire later in the next
cycle. Thus i and j would tend to synchronize.?

The results of a sample simulation are shown in Figure
28. The diagram shows the cycle-by-cycle distribution of
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Figure 27.  The time course of a node’s threshold. After gener-
ating a spike a node enters an absolute refractory period (ARP).
The ARP is followed by a relative refractory period (RRPY. After
the RRP a node’s threshold reverts to its normal level The
distribution of the arrival times of signals from a connected
ensemble is depicted by the shaded region. The noisy propaga-
tion delavs are modeled as a Ganssian.
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Figure 28. The cycle-by-cycle distribution of the firing times of nodes within a “driven” ensemble being driven by a “driver”
ensemble whose nodes are firing in synchrony. The left-hand “wall” of the isometric diagram displays the standard deviation and mean
of the node firing times with reference to the ideal firing time. The nodes in the driven ensemble become synchronized in spite of
noisy propagation delays. The maximum lag in the firing times of nodes in the driven ensemble becomes less than 3 msec and the
mean lag becomes less than 1 msec within two cycles. By the end of seven cycles the maximum and mean lags reduce to 1 and 0.2

msec, respectively.

the firing times of nodes within a “driven” ensemble that
is being driven by a “driver” ensemble whose nodes are
oscillating in phase lock. At was chosen to be 0.001 time
units (i.e., all calculations were done every Y1000 of a time
unit), where a unit of time may be assumed to be 1 msec.
Other simulation parameters were as follows: (1) n, the
number of nodes in ensemble, equals 64; (2) m, the
interensemble connectivity, equals 20; (3) g, the slope of
the threshold during the RRP, equals 0.032; (4) a, the
“coupling” factor between immediate neighbors within an
ensemble, equals 0.07; (5) d, the average interensemble
propagation delay, equals 4.5 time units; (6) s, the stan-
dard deviation of interensemble propagation delay,
equals 1.5 time units; and (7) w, the expected period of
oscillation, equals 10.5 time units.

As shown in Figure 28, despite noisy propagation
delays, the maximum lag in the firing of nodes in the
“driven” ensemble becomes less than 3 msec and the
mean lag becomes less than 1 msec within two cycles. By
the end of seven cycles the maximum and mean lags
reduce to 1 and 0.2 msec, respectively.

8. Psychological implications

In this section we examine the psychological implications
of our system, especially in view of the biologically moti-
vated estimates of the system parameters discussed in
section 7.3.

8.1. A neurally plausible model of reflexive reasoning

The proposed system can encode specific as well as
general instantiation-independent knowledge and per-
form a broad range of reasoning with efficiency. The
system makes use of very simple nodes, and yet its node
requirement is only linear in the size of the LTKB (the
size being measured in terms of the number of predicates,
facts, rules, concepts, and IS-A relations). Thus the sys-
tem illustrates how a large LTKB may be encoded by
using only a fraction of 10!2 nodes.

The system demonstrates that a class of forward and
backward reasoning can be performed very rapidly, in
time independent of the size of the LTKB. Below we set
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the values of appropriate system parameters to neurally
plausible values identified in section 7.3 and indicate the
time the system takes to perform certain inferences.29
These times are, at best, broad indicators of the time we
expect the internal reasoning process to take. Also note
that they do not include the time that would be taken by
perceptual, linguistic, and motor processes to process and
respond to inputs.

8.1.1. Some typical retrieval and inference timings. Let us
choose 7 to be 20 msec and assume that p-btu nodes can
synchronize within two periods of oscillations. The sys-
tem takes 320 msec to infer “John is jealous of Tom” after
being given the dynamic facts “John loves Susan” and
“Susan loves Tom” (this assumes the rule, ifxloves yand y
loves z then x is jealous of z). The system takes 260 msec to
infer “John is a sibling of Jack,” given “Jack is a sibling of
John.” Similarly, the system takes 320 msec to infer
“Susan owns a car” after its internal state is initialized to
represent “Susan bought a Rolls-Royce.” If the system’s
LTKB includes the long-term fact “John bought a Rolls-
Royce,” the system takes 140, 420, and 740 msec, respec-
tively, to answer yes to the queries Did John buy a Rolls-
Royce? Does John own a car? and Can John sell a car?

Thus our system demonstrates that a class of reasoning
can occur rapidly, both in the forward (predictive) mode
as well as backward (query answering) mode. The above
times are independent of the size of the LTKB and do not
increase when additional rules, facts, and IS-A relation-
ships are added to the LTKB. If anything, these times
may decrease if one of the additional rules is a composite
rule and short-circuits an existing inferential path. For
example, ifanew rule “if xbuys y then x can sell y” were to
be added to the LTKB, the system would answer the
query Can John sell a car? in 420 msec instead of 740
msec.

8.1.2. variations in inference and retrieval times. Consider
two p-btu nodes A and B such that A is connected to B
(although we are referring to individual nodes, the follow-
ing comment would also apply if A and B were ensembles
of nodes). It seems reasonable to assume that the number
of cycles required for B to synchronize with A will depend
on the synaptic efficacy of the link from A to B. This
suggests that the time taken by the propagation of bind-
ings ~ and hence rule firing — will vary, depending on the
weights on the links between the argument nodes of the
antecedent and consequent predicates. Rules whose asso-
ciated links have high weights will fire and propagate
bindings faster than rules whose associated links have
lower weights. It also follows that different facts will take
different times to be retrieved, depending on the weights
of the links connecting the appropriate arguments and
filler concepts (see Fig. 10). Note that the inhibitory
signal from an argument will continue to block the activa-
tion of a fact node until the signals from the filler concepts
and the argument get synchronized. Similarly, during the
processing of wh-queries, the time it would take for the
filler concepts to synchronize with the binder units will
depend on the weights of the links from the binder nodes
to the concept nodes (see Fig. 17). Thus the retrieval of
argument fillers would be faster if the weights on the
appropriate links are high.3¢ Observe that the variation in
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times refers to the variations in the time it takes for nodes
to synchronize and not the time it takes for nodes to
become active. This suggests that the time course of
systematic inferences and associative priming may be
quite different.

8.2. Nature of reflexive reasoning

Our model suggests several constraints on the nature of
reflexive reasoning. These have to do with (1) the capacity
of the working memory underlying reflexive reasoning,
(2) the form of rules that may participate in such reason-
ing, and (3) the depth of the chain of reasoning,

8.2.1. The working memory underlying refiexive reason-
ing. Dynamic bindings and, hence, dynamic facts are
represented in the system as a rhythmic pattern of activity
over nodes in the LTKB network. In functional terms, this
transient state of activation can be viewed as a limited-
capacity dynamic working memory that temporarily holds
information during an episode of reflexive reasoning. Let
us refer to this working memory as the WMRR.

Our system predicts that the capacity of the WMRR is
very large and, at the same time, very limited! The
number of dynamic facts that can simultaneously be
present in the WMRR is high and is given by k;p, where
k, is the predicate multiple instantiation constant intro-
duced in section 6, and p is the number of predicates
represented in the system. The number of concepts that
may be active simultaneously is also very high and equals
k,c, where ¢ is the number of concepts in the IS-A
hierarchy and &, is the multiple instantiation constant for
concepts introduced in section 5.2. But, as we discuss
below, there are two constraints that limit the number of
dynamic facts that may actually be present in the WMRR
at any given time.

8.2.2. Working memory, medium-term memory and overt
short-term memory. Before moving on let us make two
observations. First, the dynamic facts represented in the
WMRR during an episode of reasoning should not be
confused with the small number of short-term facts that
an agent may overtly keep track of during reflective
processing and problem solving. In particular, the
WMRR should not be confused with the (overt) short-
term memory implicated in various memory span tasks
(for review see Baddeley 1986). Second, our reasoning
system implies that a large number of dynamic facts will
be produced as intermediate results during reasoning and
would be represented in the WMRR. These facts, how-
ever, are only potentially relevant and would remain
covert and decay in a short time unless they turn out to be
relevant in answering a “query” or providing an explana-
tion. We expect that only a small number of dynamic facts
would turn out to be relevant, and those that do would
“enter” a medium-term memory, where they would be
available for a much longer time (see sect. 10.5). Some of
these facts may also enter the overt short-term memory.
Note that this short-term memory need not be a physi-
cally distinct module. It may simply consist of facts/
entities in the WMRR that are currently receiving an
attentional spotlight (cf. Crick 1984; Crick & Koch 1990a).




8.2.3. A bound on the number of distinct entities refer-
enced in the WMRR. During an episode of reasoning, each
entity involved in dynamic bindings occupies a distinct
phase in the rhythmic pattern of activity. Hence the
number of distinct entities that can occur as argument
fillers in the dynamic facts represented in the WMRR
cannot exceed | m,,,./o | , where ,,,, is the maximum
period (corresponding to the lowest frequency) at which
p-btu nodes can sustain synchronous oscillations, and
equals the width of the window of synchrony. Thus the
WMRR may represent a large number of facts, as long as
these facts refer to only a small number of distinct enti-
ties. Note that the activation of an entity together with all
its active superconcepts counts as only one entity.

In section 7.2 we pointed out that a neurally plausible
value of m,,,, is about 33 msec and a conservative estimate
of w is around 6 msec. This suggests that as long as the
number of entities referenced by the dynamic facts in the
WMRR is five or less, there will essentially be no cross-
talk among the dynamic facts. If more entities occur as
argument fillers in dynamic facts, the window of syn-
chrony w would have to shrink in order to accommodate
all the entities. For example, » would have to shrink to
about 5 msec in order to accommodate 7 entities. As @
shrinks, the possibility of cross-talk between dynamic
bindings would increase and eventually disrupt the rea-
soning process. The exact bound on the number of dis-
tinct entities that may fill arguments in dynamic facts
would depend on the smallest feasible value of w. Given
the noise and variation indicated by the data on syn-
chronous activity cited in section 7.1, it appears unlikely
that @ can be less than 3 msec. Hence we predict that a
neurally plausible upper bound on the number of distinct
entities that can be referenced by the dynamic facts
represented in the WMRR is about 10. This prediction is
consistent with our belief that most cognitive tasks per-
formed without deliberate thought tend to involve only a
small number of distinct entities at a time (though, of
course, these entities may occur in multiple situations
and relationships).

It is remarkable that the bound on the number of
entities that may be referenced by the dynamic facts in
the WMRR relates so well to 7 = 2, the robust measure of
short-term memory capacity (Miller 1956). This unex-
pected coincidence merits further investigation as it sug-
gests that temporal synchrony may also underlie other
short-term and dynamic representations. Similar limita-
tions of the human dynamic-binding mechanism are also
illustrated in experimental work on the attribute-binding
problem (Stenning et al. 1988).

The bound on the number of distinct entities refer-
enced in the WMRR is independent of similar bounds on
the working memories of other subsystems. As we dis-
cuss in section 10.4, dynamic structures in the working
memory of other subsystems may refer to different sets
of entities using phase distributions local to those sub-
systems.

8.2.4. A bound on the mulitiple instantiation of predicates.
The capacity of the WMRR is also limited by the con-
straint that it may only contain a small number of dynamic
facts pertaining to cach predicate. This constraint stems
from the high cost of maintaining multiple instantiations
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of a predicate. As stated in section 6, in a backward-
reasoning system, if k, denotes the bound on the number
of times a predicate may be instantiated during an episode
of reasoning, then the number of nodes required to
represent a predicate and the associated long-term facts is
proportional to k,, and the number of nodes required to
encode a rule is proportional to k§. Thus a backward-
reasoning system that can represent three dynamic in-
stantiations of each predicate will have anywhere from
three to nine times as many nodes as a system that can
only represent one instantiation per predicate. In a
forward-reasoning system the cost is even higher and the
number of nodes required to encode a rule is k3, where m
is the number of antecedents in the rule. The time
required for propagating multiple instantiations of a pred-
icate also increases by a factor of k,. In view of the
significant space and time costs associated with multiple
instantiation and the necessity of keeping thesc resources
within bounds in the context of reflexive reasoning, we
predict that k, is quite small, perhaps no more than three.
As observed in section 6, k; need not be the same for all
predicates, and it is possible that some critical predicates
may have a slightly higher k,.3!

8.2.5. Form of rules that may participate in refiexive rea-
soning. In section 4.9 we pointed out that when answer-
ing queries based on the long-term knowledge encoded in
the LTKB, our reflexive-reasoning system cannot use
rules that contain variables occurring in multiple argu-
ment positions in the antecedent unless such variables
also appear in the consequent and get bound during the
query-answering process. A similar constraint applies to
forward (predictive) reasoning: When making predictions
based on given dynamic facts, a system cannot use a rule
that contains variables occurring in multiple argument
positions in the consequent, unless such variables also
appear in the antecedent and get bound during the
reasoning process. These constraints predict that certain
queries cannot be answered in a reflexive manner even
though the corresponding predictions can be made reflex-
ively. For example, consider an agent whose LTKB in-
cludes the rule “if x loves y and y loves z then x is jealous of
z” and the long-term facts “John loves Mary” and “Mary
loves Tom.” Our system predicts that if this agent is asked
Is John jealous of Tom? she will be unable to answer the
query in a reflexive manner. Note that the antecedent of
the rule includes a repeated variable, y, that does not
occur in the consequent. Hence our system predicts that
answering this question will require deliberate and con-
scious processing (unless the relevant long-term facts are
active in the WMRR for some reason at the time the query
is posed). However, an agent who has the above rule about
love and jealousy in its LTKB would be able to infer “John
is jealous of Tom” in a reflexive manner, on being “told”
“John loves Mary” and “Mary loves Tom.” This is because
such an inference involves forward (predictive) reasoning.

As another example of the predictions made by the
constraint, assume that our agent’s conception of kinship
relations is one wherein the maternal/paternal distinction
at the grandparent level is not primary. Let us also assume
that the agent’'s maternal grandfather is George. The
constraint predicts that the agent can» ot answer ves to the
query Is George vour maternal grandtather? in a reflexive
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manner even though the agent may be able to answer the
question Is George your grandfather? in a reflexive man-
ner (this example is due to Feldman, personal communi-
cation). The basis of this prediction is as follows: If “mater-
nal grandfather” is not a primary kinship relation then it
must be computed by using an appropriate rule. Given
the nature of the maternal-grandfather relationship, any
rule that does so would violate the repeated variable
restriction.32

The restrictions imposed on the reasoning system also
imply that it is not possible to apply the abstract notion
of transitivity in a reflexive manner when answering
queries. Observe that we need to state Vx,y,z P(x,y) /\
P(y.z) = P(x,z) in order to assert that the relation P is
transitive and the rule has the variable y occurring twice
in the antecedent but not even once in the consequent.
Given that transitivity plays an important role in com-
monsense reasoning - to wit, reasoning about sub- and
supercategories, part-of relationships, greater and less
than ~ the inability to handle transitivity might appear to
be overly limiting. However, this is not the case. We
believe that as far as query answering is concerned,
humans are only good at dealing with the transitivity of a
small number of relations. In these cases, the transitivity
of the appropriate relations is encoded explicitly and the
computation of transitivity does not require the use of an
abstract transitivity rule. The organization of concepts in
an IS-A hierarchy using I1S-A links to capture the sub-
class/superclass relationship is an excellent case in point.
The use of IS-A links converts the problem of computing
the transitive closure from one of applying the transitivity
rule Vx,y,z IS-A(x,y) \ 1S-A(y.z) > 15-A(x,z), to one of
propagating activation along links.

8.2.6. Bound on the depth of the chain of reasoning. Two
things might happen as activity propagates along a chain
of argument ensembles during an episode of reflexive
reasoning. First, the lag in the firing times of successive
ensembles may gradually build up due to the propagation
delay introduced at each level in the chain. Second, the
dispersion within each ensemble may gradually increase
due to the variations in propagation delays and the noise
inherent in synaptic and neuronal processes. Whereas
the increased lag along successive ensembles will lead to a
“phase shift” and, hence, binding confusions, the in-
creased dispersion of activity within successive ensem-
bles will lead to a gradual loss of binding information.
Increased dispersion would mean less phase specificity
and, hence, more uncertainty about the arguments filler.
Because of the increase in dispersion along the chain of
reasoning, the propagation of activity will correspond less
and less to a propagation of argument bindings and more
and more to an associative spread of activation. For
example, the propagation of activity along the chain of
rules Py(x,4,2) > Py(x.y.2) > . . . P (x.y.5) resulting from
the input P,(a.b.c) may lead to a state of activation where
all one can say about P, is that there is an instance of P,
involving the entities a, b, and ¢. but it is not clear which
entity fills which role of P,,.

It follows, then, that the depth to which an agent may
reason during reflexive reasoning is bounded. Thus an
agent may be unable to make a prediction (or answer i
query) — even when the prediction (or answer) logically
follows from the knowledge encoded in the 1TTRB - if the
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length of the derivation leading to the prediction (or the
answer) exceeds this bound. It should be possible to re-
late the bound on the depth of reflexive reasoning to spe-
cific physiological parameters, but at this time we are not
aware of the relevant data upon which to base such a pre-
diction. We would welcome pointers to appropriate data.

8.3. Nature of inputs to the reflexive reasoner

Our system demonstrates that rulelike knowledge may be
used effectively during reflexive reasoning, provided it is
integrated into the LTKB and wired into the inferential
dependency graph. It also demonstrates that reflexive
reasoning can effectively deal with small dynamic input in
the form of facts.33 We suspect that the ability of any
reflexive-reasoning system to deal with novel rulelike
information will be extremely limited; if the input con-
tains rulelike information that is not already present in the
LTKB, the agent may have to revert to a reflective mode
of reasoning in order to use this information. This may
partially explain why human agents find it difficult to
perform syllogistic reasoning without deliberate and con-
scious effort even though, in a formal sense, such reason-
ing is simpler than some of the reasoning tasks we can
perform in a reflexive manner. In syllogistic reasoning,
the “input” has the form of rules and the reflexive reasoner
may be unable to use them unless they are already part of
the LTKB.

8.4. The reflexive-reasoning system and production
systems

As may be evident, there exists a correspondence be-
tween a production system and the reflexive-reasoning
system described in this article — the declarative memory
corresponds to long-term facts, productions correspond
to rules, and the working memory corresponds to the
WMRR. Thus our system can be viewed as a parallel-
production system.

Estimates of the working-memory capacity of produc-
tion system models range from very small (about seven
elements) to essentially unlimited. Orir work points out
that the working memory of a reflexive processor can
contain a very large number of elements (dvnamic facts in
the case of the reasoning system) as long as (1) the
elements do not refer to more than (about) 10 entities, and
(2) the elements do not involve the same relation (predi-
cate) more than (about) three times. The proposed svstem
also demonstrates that a large number of rules, even those
containing variables, may fire in parallel as long as any
prodicat(‘ is not instantiated more than (about) three times
(cf. Newell's suggestion (1980] that while productions
without variables can be executed in parallel. productions
with variables may have to be executed in a serial fashion).

A number of cognitive models are based on the produc-
tion system formalism: two of the most comprehensive
are ACT* (Anderson 1983) and soanr (Newell 1990). Neu-
rally plausible realizations of these models. however, have
not been proposed. Although several aspects of ACT* such
as its use of levels of activation and weighted links have
neural underpinnings, it has not been shown how certain
critical aspects of the model may be realized in a neorally
plausible manner. For example, acr* vepresents produc-
tions with variables, hut Anderson does not provide




neurally plausible explanation of how bindings are propa-
gated and how nodes determine whether two bindings are
the same. In his exposition of sOAR, Newell has analyzed
the time course of neural processes to estimate how long
various SOAR operations should take, but he did not
suggest how a system such as SOAR may be realized in a
neurally plausible manner (see Newell 1990, p. 440).
Although a complete mapping of comprehensive systems
such as SOAR and ACT* to a neurally plausible architecture
still remains an open problem, our system could provide a
basis for doing so. In this context, the biologically mo-
tivated constraints on the capacity of the WMRR indi-
cated by our system seem particularly significant.

8.5. Reflexive reasoning and text understanding

Several problems will have to be addressed in order to
integrate the proposed reasoning system with a compre-
hensive cognitive system. Some of these problems are
discussed in section 10; they include (1) interactions
between the reflexive-reasoning system and medium-
term memory; (2) how medium-term memory is mapped
into long-term memory; (3) how the set of entities in the
WMRR changes in a fluid manner; and (4) how distinct
modules performing different reflexive processes (e.g., a
parser and a reasoner) ..xmmunicate with one another.

The problem of text understanding is particularly rele-
vant because there exists a rich body of empirical data on
the role of inferences based on long-term knowledge
during language undcrstanding. The data strongly sug-
gest that certain types of inferences (i.e., inferences that
help establish referential and causal coherence) do occur
very rapidly and automatically during text understanding
(see, e.g., Carpenter & Just 1977; Keenan et al. 1984;
Kintsch 1974; McKoon & Ratcliff 1980). The evidence for
the automatic occurrence of elaborative inferences, how-
ever, is mixed (see, e.g., Kintsch 1988; McKoon & Ratcliff
1986; Potts et al. 1988; Singer & Ferreira 1983). Elabora-
tive inferences predict highly likely consequences of
events mentioned in the discourse and correspond to
forward reasoning in our system. However, as Potts et al.
(1988) point out, available experimental evidence does
not rule out the possibility that elaborative inferences are
performed during reading. The experiments involve two-
sentence texts, and it is likely that the subjects do not have
any inherent interest in making predictive inferences. It
may turn out that subjects do make such inferences when
reading longer texts.

Our system suggests that reflexive reasoning can occur
in backward as well as forward direction (although, as
pointed out in sect. 8.2, there are critical differences in
the form of rules that participate in the two types of
reasoning). This suggests that agents may perform infer-
ences required for establishing referential and causal
coherence as well as predictive inferences in a reflexive
manner. The system’s prediction can be resolved with the
observed data if we assume that the results of predictive
inferences only last for a short time (sav a few hundred
msec) and then disperse unless subsequent input (text)
indicates that these inferences are significant and/or rele-
vant to the discourse. Only those inferred facts that turn
out to be relevant are encoded in medium-term memory
and become available for a longer time.

The extensive body of empirical data on the role of
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long-term knowledge and inferences in reading will in-
form future work on our model of reflexive reasoning. At
the same time, we hope that the constraints on the form of
rules and the capacity of the working memory underlying
reflexive reasoning that have emerged from our work will
help experimental psychologists in formulating and test-
ing novel hypotheses about the role of reflexive reasoning
in reading.

8.6. Refiexive reasoning and the fan effect

Our initial hypothesis as well as our system’s behavior
suggests that the time taken by reflexive reasoning is
independent of the size of the LTKB. This conflicts with
the fan effect (Anderson 1983; Reder & Ross 1983); this
effect generally refers to the following phenomenon: The
more facts associated with a particular concept, the slower
the recognition of any one of the facts. We hypothesize
that the fan effect applies only to medium-term knowl-
edge and not to long-term knowledge (we use long-term
in the sense discussed in sect. 1.1). Consider the nature of
the task that leads to the fan effect. An agent studies a set
of facts until he can recall them. Subsequently, the agent
is asked to recognize and make consistency judgments
about the learned material and his reaction times are
recorded. It is observed that the time taken to recognize a
fact increases with the number of facts studied by the
agent involving the same concept(s). Observe, however,
that the fan effect concerns an arbitrary collection of facts
that the agent studied prior to the experiment. We hy-
pothesize that these facts are only encoded in the agent’s
medium-term memory and are not assimilated into the
agent’s LTKB. Thus the fan effect is not about facts in the
LTKB, rather it is about facts in medium-term memory.

9. Related work

In spite of the apparent significance of reflexive reasoning
there have been few attempts at modeling such rapid
inference with reference to a large body of knowledge.
Some past exceptions are Fahlman's (1979) work on NETL
and Shastri’s (1988a) work on a connectionist semantic
memory (see also Geller & Du 1991). Both these models
primarily deal with inheritance and classification within
an IS-A hierarchy. Holldobler (1990) and Ullman and van
Gelder (1988) have proposed parallel systems for per-
forming more powerful logical inferences, but these sys-
tems have unrealistic space requirements. The number of
nodes in Holldobler's system is quadratic in the size of the
LTKB, and the number of processors required by Ullman
and van Gelder is even higher.34 A significant amount of
work has been done by researchers in knowledge repre-
sentation and reasoning to identify classes of inference
that can be performed efficiently (e.g.. see Bylander et al.
1991; Frisch & Allen 1982; Kautz & Selman 1991; Le-
vesque 1988 Levesque & Brachman 1985; McAllester
1990). The results, however, have largely been negative.
The few positive results reported do not provide insights
into the problem of reflexive reasoning because they
assume a weak notion of efficieney (polynomial time),
restrict inference in implausible ways (e.g., by excluding
chaining of rules), and/or deal with overly limited expres-
siveness (e.g.. only propositional caleulus).
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9.1. Relation between ner. and the proposed system

It was pointed out in section 3 that as an abstract computa-
tional mechanism temporal synchrony is related to the
notion of marker passing. It was also mentioned that
Fahlman (1979) had proposed the design of a parallel
marker-passing machine (NETL) that could solve a class of
inheritance and recognition problems efficiently. But as
discussed in section 3, NETL was not neurally plausible.
In view of the correspondence between temporal syn-
chrony and marker passing, our system offers a neurally
plausible realization of marker passing. It is important to
underscore the significance of this realization. First,
nothing is stored at a node in order to mark it with a
marker. Instead, the time of firing of a node relative to
other nodes and the coincidence between the time of
firing of a node and that of other nodes has the effect of
marking a node with a particular marker. Furthermore, a
node does not have to match anything akin to markers. It
simply has to detect whether appropriate inputs are
coincident. Second, the system does not require a central
controller. Once a query is posed to the system by
activating appropriate nodes, it computes the solution
without an external controller directing the activity of
every node at every step of processing. The system’s
ability to do so stems from the distributed control mecha-
nisms that are an integral part of the representation.
Some examples of such built-in mechanisms that automat-
ically control the propagation of activation are the C,
and C, relay nodes in concept clusters (sect. 5.2), and the
switch networks associated with concepts and predicates
that automatically direct the flow of activation to unused
banks (sect. 5.2 & 6). Third, our realization of marker
passing quantifies the capacity of the working memory
underlying reflexive processing in terms of biological
parameters. As we have seen, these constraints have
psychological significance.

In addition to demonstrating that a marker-passing
system can be realized in a neurally plausible manner, our
system shows that a richer class of representation and
reasoning problems than that realized in NETL can be
solved using temporal synchrony - and, hence, marker
passing. If we set aside the issue of exceptional knowledge
(see below), NETL represented an IS-A hierarchy and
n-ary facts, where terms in a fact could be types or
instances in the IS-A hierarchy. NETL, however, did not
represent rules involving n-ary predicates. NETL derived
inherited facts by replacing terms in a fact by their
subtypes or instances (this characterization accounts for
NETL's ability to perform simple [unary] inheritance as
well as relational inheritance), but it did not combine
inheritance with rule-based reasoning. Consider the ex-
ample of relational inheritance where preys-on(Sylvester,
Tweety) is derived from preys-on(Cat, Bird). Observe
that this only involves substituting Sylvester for Cat and
Tweety for Bird on the basis of the IS-A relations is-
a(Sylvester, Cat) and is-a(Tweety, Bird). This form of
reasoning is weaker than that performed by our system.
Our reasoning system can also encode rules such as Vx,y
preys-on(x,y) > scared-of(y.x). and given preys-on(Cat.
Bird) it cannot only infer preys-on(Sylvester, Tweety) but
also scared-ofl Tweety, Sylvester).

The presence of a central controller allowed NETL to
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compute and enumerate results of queries involving an
arbitrary sequence of set intersection and set union oper-
ations. NETL's central controller could decompose a query
into the required sequence of intersection and union
operations and instruct NETL to perform these operations
in the proper sequence. This is something our reflexive-
reasoning system does not (and is not intended to) do.

NETL also allowed exceptions in the 1S-A hierarchy, but
its treatment of exceptions suffered from serious semantic
problems (see Fahlman et al. 1981; Touretzky 1986). In
sections 5.4 and 5.5 we described how rules with type
restrictions are encoded in our system and explained how
this encoding may be extended to deal with type prefer-
ences so that the appropriateness — or strength ~ of a rule
firing in a specific situation may depend on the types of
the entities involved in that situation. The ability to
encode evidential rules will allow our system to incorpo-
rate exceptional and default information in an IS-A hier-
archy (see below).

9.2. cs~: a connectionist semantic memory

Shastri (1988a; 1988b) developed csN, a connectionist
semantic network that could solve a class of inheritance
and classification problems in time proportional to the
depth of the conceptual hierarchy. csN computed its
solutions in accordance with an evidential formalization
and dealt with exceptional and conflicting information in a
principled manner. It found the most likely answers to
inheritance and recognition queries by combining the
information encoded in the semantic network. csN oper-
ated without a central network controller that regulated
the activity of its nodes at each step of processing. This
was the result of using distributed mechanisms (e.g.,
relay nodes) for controlling the flow of activity. A complete
integration of a csN-like system and the proposed reason-
ing system should lead to a system capable of dealing with
evidential and conflicting rules and facts in a principled
manner.

9.3. Some connectlonist approaches to the
dynamic-binding probiem

Feldman (1982) addressed the problem of dynamically
associating any element of a group of N entities with any
element of another group of N entities using an intercon-
nection network. He showed how it was possible to
achieve the association task with an interconnection net-
work having only 4N¥2 nodes. The work, however, did not
address how such a representation could be incorporated
within a reasoning system where bindings need to be
propagated.

Touretzky and Hinton (1988) developed Dcps, a distrib-
uted connectionist production system, to address the
problem of rule-based reasoning within a connectionist
framework. The ability of bcps to maintain and propagate
dynamic bindings is, however. quite limited. First, DCPs
can only deal with rules that have a single variable.
Second, DCPS is serial at the knowledge level, because
each step in its reasoning process involves selecting and
applying a single rule. Thus in terms of efficiency, DCPS is
similar to a traditional (serial) production system and must
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deal with the combinatorics of search. Third, it assumes
that there is only one candidate rule that can fire at each
step of processing. Hence it is not a viable model of
reflexive reasoning.

Smolensky (1990) describes a representation of dy-
namic bindings using tensor products. Arguments and
fillers are viewed as n and m dimensional vectors, respec-
tively, and a binding is viewed as the n « m dimensional
vector obtained by taking the tensor product of the
appropriate argument and filler vectors. The system en-
codes arguments and fillers as patterns over pools of
n argument and m filler nodes and argument bindings
over a network of n x m nodes. The system can only
encode n » m bindings without cross-talk, although a
greater number of bindings can be stored if some cross-
talk is acceptable. Dolan and Smolensky (1989) describe
TPPS, a production system based on the tensor product
encoding of dynamic bindings. However, like pcps, TpPPS
is also serial at the knowledge level and allows only one
rule to fire at a time.

The primary cause of knowledge-level serialism in Dcps
and TPPs is that these systems represent arguments and
fillers as patterns of activity over common pools of nodes.
This severely limits the number of arguments, fillers, and
dynamic bindings that may be represented at the same
time. In contrast, the compact encoding of predicates,
arguments, and concepts in our system allows it to repre-
sent and propagate a large number of dynamic bindings
simultaneously.

Another system that uses compact encoding and sup-
ports knowledge-level parallelism is ROBIN (Lange &
Dyer 1989). This system was designed to address the
problem of natural-language understanding - in particu-
lar, the problem of ambiguity resolution using evidential
knowledge. ROBIN and our system have several features in
common; for example, ROBIN can also maintain a large
number of dynamic bindings and encode “rules” having
multiple variables. There are also important differences:
ROBIN permanently allocates a unique numerical signa-
ture to each constant in the domain and represents dy-
namic bindings by propagating the signature of the appro-
priate constant to the argument(s) to which it is bound.
The use of signatures allows ROBIN to deal with a large
number of entities during an episode of reasoning. There
is, however, a potential problem with the use of signa-
tures: If each entity has a unique signature, then signa-
tures can end up being high-precision quantities. For
example, assigning a distinct signature to 50,000 concepts
will require a precision of 16 bits. Hence propagating
bindings would require nodes to propagate and compare
high-precision analog values. This problem may be cir-
cumvented by representing signatures as n-bit vectors
and encoding arguments as clusters of n nodes communi-
cating via bundles of links (see sect. 9.4).

The temporal-synchrony approach can be compared to
the signature-based approach as follows: Although the
total number of entities is very large, the number of
entities involved in a particular reasoning episode is
small. Hence instead of assigning a distinet signature to
every entity, it suffices to assign distinct signatures to only
entities that are participating in an episode of reasoning.
Furthermore, this assignment need exist only for the
duration of a reasoning episode. One can interpret the
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relative phase in which a node is firing as such a transient
signature of the node. The discussion in section 8.2 about
working memory and medium-term memory (also sect.
10) suggests how an augmented system that includes
medium-term memory may engage in tasks involving
more than 10 or so entities.

Barnden and Srinivas (1991) have proposed Conposit, a
connectionist production system. In Conposit, patterns
are associated by virtue of the relative position of registers
containing these patterns, as well as the similarity be-
tween patterns. Argument bindings are propagated by a
connectionist interpreter that reads the contents of regis-
ters and updates them. We believe that Conposit may be
an appropriate architecture for modeling complex reflec-
tive processes, but it may not be best suited for modeling
reflexive reasoning.

Another solution to the binding problem is based on
frequency modulation, whereby dynamic bindings may
be encoded by having the appropriate nodes fire with the
same frequency (Tomabechi & Kitano 1989).

9.4. Using patterns for propagating bindings

An important aspect of the proposed reasoning system is
the organization of n-ary rules into a directed graph,
wherein the inferential dependencies between anteced-
ent and consequent predicates together with the corre-
spondence between the predicate arguments are repre-
sented explicitly. As we have seen, this encoding in
conjunction with the temporal representation of dynamic
bindings leads to an efficient reasoning system. But the
above encoding of rules is significant in its own right. One
may take this framework for organizing rules and obtain
other organizationally isomorphic connectionist systems
by using alternative techniques (e.g., frequency encod-
ing) for representing dynamic bindings. These systems,
however, will differ in the size of the resulting network,
constraints on the nature of reasoning, reasoning speed,
and biological plausibility. To illustrate how the suggested
organization of rules and arguments may be combined
with alternate techniques for propagating dynamic bind-
ings, we use the proposed encoding of rules in conjunc-
tion with what may be referred to as the pattern-
containment approach.35

In the pattern-containment approach we assume that
each argument is represented by a cluster of n nodes, and
inferential links between arguments are represented by
connecting the nodes in the associated argument clusters.
An n-dimensional pattern of activity is associated with
each concept (i.e., an instance or a type), and a dynamic
binding between a concept and an argument is repre-
sented by inducing the pattern of activation associated
with the concept in the appropriate argument cluster.
The propagation of dynamic bindings in the system occurs
by the propagation (replication) of patterns of activity
along connected argument clusters.

It is instructive to compare the pattern-containment
approach with the temporal-synchrony approach. The
key question is: What is the significance of the pattern of
activity that is associated with a concept and propagated
across argument clusters? One possibility is that cach
n-dimensional pattern encodes the signature associated
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with some concept (Lange & Dyer 1989). As we pointed
out earlier, the value of n would depend on N, the number
of distinct concepts represented in the system. If we
assume that concepts are assigned arbitrary patterns as
signatures, n would equal log,N. Alternatively the pat-
tern of activity could encode all the microfeatures of a
concept (Hinton 1981; Rumelhart & McClelland 1986).
Such a pattern, however, would have to be even larger.
Both of these interpretations of patterns make suboptimal
use of computational resources: Each argument cluster
has to be large enough to encode the full signature of a
concept or all the microfeatures associated with a con-
cept. Also, individual bindings have to be propagated by
propagating large patterns of activity. An attractive alter-
native would be to assume that the patterns associated
with concepts during the propagation of bindings are
some sort of “reduced descriptions.” We suggest that the
temporal-synchrony approach does exactly this - albeit in
an unusual manner. During the propagation of bindings,
the relative phase of firing of an active concept acts as a
highly reduced description of that concept.

The use of temporal synchrony enables our system
to do with one node and one link what the pattern-
containment approach does using n nodes and links. The
temporal approach also leads to a simple encoding of long-
term facts. In contrast, the realization of a long-term fact
in the pattern-containment approach will be more com-
plex since it must support mn-bit comparisons (where m is
the arity of the fact predicate) to check whether the
dynamic bindings match the static bindings encoded in
the fact. In section 7.3 we suggested that single (idealized)
nodes in our system would have to be mapped to ensem-
bles of nodes and single (idealized) links would have to be
mapped to a group of links. This mapping, however, was
required to deal with noise in the system and the pattern-
containment approach will also have to be augmented in
order to deal with noise.

10. Discussion

We have presented a neurally plausible model for knowl-
edge representation and reflexive reasoning. The model
supports the long-term encoding of general instantiation-
independent structures as well as specific situations
involving n-ary relations. It also supports the representa-
tion of dynamic information and its interaction with long-
term knowledge. Everything presented in this target
article, except for the treatment of soft rules (sect. 5.5),
has been simulated. The proposed model makes several
specific predictions about the nature of reflexive reason-
ing and the capacity of the working memory underlying
reflexive reasoning. These predictions are verifiable and
we hope that they will be explored by experimental
psvchologists. The proposed representational mecha-
nisms are quite general and should be applicable to other
problems in cognition whose formulation requires the
expressive power of n-ary predicates and whose solution
requires rapid and svstematic interactions hetween long-
term and dynamic structures. These include problems in
high-level vision. other problems in Tanguage processing
such as svatactic processing. and reactive planning. Be-
low we discuss some problems that need to he addressed
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if the representational mechanisms proposed here are to
be applied in an extended setting.

10.1. Where do phases originate?

In a sense, the “source” of rhythmic activity in the pro-
posed reasoning system is clearly identifiable: The proc-
ess that poses a query to the system provides staggered
oscillatory inputs to entities mentioned in the query and
thereby activates them in distinct phases. In a composite
perceptual/linguistic/reasoning system, however, such a
separation in the phase of the firing of distinct entities
must occur intrinsically. For example, the utterance “John
gave Mary Bookl” should automatically result in the
representations of “John,” “Mary,” and “Book1” firing in
different phases and synchronously with giver, recipient,
and give-obj, respectively.

The problems of automatic phase separation and conse-
quent segmentation and feature binding has been ad-
dressed by several researchers. For example, Horn et al.
(1991) demonstrate how an input pattern containing a red
square and a blue circle can result in the firing of nodes
representing the features “red” and “square” in one
phase, and the nodes representing the features “blue” and
“circle” in a different phase. The model, however, does
not work if there are more than two objects. An internal
attentional mechanism similar to the “searchlight” pro-
posed by Crick (1984) may be required for dealing with
more elaborate situations.

In the case of linguistic input, we believe that the initial
phase separation in the firing of each constituent is the
outcome of the parsing process. The parser module ex-
presses the result of the parsing process ~ primarily the
bindings between syntactic arguments and constituents ~
by forcing appropriate nodes to fire in and out of syn-
chrony. This is illustrated in a parser for English, de-
signed by Henderson (1991), using the proposed model
for reflexive reasoning,.

10.2. Who reads the synchronous firing of nodes?

There is no homunculus in our system that “reads” the
synchronous activity to detect dynamic bindings. In-
stead, the synchronous activity is “read” by various long-
term structures in the system that do so by simply
detecting coincidence (or the lack of it) among their
inputs. For example, long-term facts read the rhythmic
activity as it propagates past them and become active
whenever the dynamic bindings encoded in the activity
are appropriate. Similarly, 1-or nodes enforce type re-
strictions (e.g., the node a in Fig. 24) by enabling the
firing of a rule whenever the appropriate argument and
type nodes are firing in-phase. We have also designed a
connectionist mechanism that automatically extracts an-
swers to wh-queries and relavs them to an output device
(McKendall 1991). We associate a code or a “name”™ with
cach concept. This name has no internal significance and
is meant solely for communicating with the svstem’s
environment. The mechanism channels the names of
concepts that constitute an answer to an output buffer in
an interleaved fashion. For example, the patterns for
Balll and Book1 would alternate in the output buffer after




the wh-query own(Mary, x)? is posed with reference to
the network in Figure 12.

10.3. How are phases recycled?

The constraint that computations must involve only a
small number of entities at any given time seems reason-
able if we restrict ourselves to a single episode of reason-
ing, understanding a few sentences, or observing a simple
scene. But what happens when the agent is participating
in a dialogue or scanning a complex scene where the total
number of significant entities exceeds the number of
distinct phases that can coexist. In such situations the set
of entities in “focus” must keep changing constantly, with
entities shifting in and out of focus in a dynamic manner.
Identifying the mechanisms that underlie such internal
shifts of attention and cause the system’s oscillatory activ-
ity to evolve smoothly so that new entities start firing in a
phase while entities presently firing in a phase gradually
“release” their phase remains a challenging open problem
(but see Crick & Koch 1990a). In this context one must
also note that the notion of an entity is itself very fluid. In
certain situations, John may be an appropriate entity. In
other situations, John's face or perhaps even Johu's nose
may be the appropriate entity.

The notion of the release of phases has a natural
interpretation in the parsing system described by Hen-
derson (1992). The parser is incremental and its output is a
sequence of derivation steps that leads to the parse. The
entities in the parser are nonterminals of the grammar,
and hence each active nonterminal must fire in a distinct
phase. Under appropriate conditions during the parsing
process — for example, when a nonterminal ceases to be
on the right frontier of the phrase structure - the phase
associated with a nonterminal can be “released” and,
hence, become available for nonterminals introduced by
subsequent words in the input. This allows the parser to
recover the structure of arbitrary long sentences as long as
the dynamic state required to parse the sentence does not
exceed the bounds on the number of phases and the
number of instantiations per predicate.

10.4. Generalizing the use of synchronous oscillations

Thus far we have assumed that the scope of phase distri-
bution is the entire system. We must, however, consider
the possibility where the system is composed of several
modules (say the perceptual, linguistic, or reasoning mod-
ules). If we combine the requirements of all these modules
it becomes obvious that ten or so phases will be inade-
quate for representing all the entities that must remain
active at any given time. Thus a temporal coding of
dynamic bindings is not viable if a single phase distribu-
tion must extend across all the modules. Therefore it
becomes crucial that each module has its own phase
distribution so that each module may maintain bindings
involving ten or so entities. This, however, poses a prob-
lem: How should modules communicate with each other
in a consistent manner? Consider a system whose visual
module is seeing "John” and whose conceptual module is
thinking something about John. How should the visual
and conceptual modules share information about john
even though the phase and frequeney of the nodes encod-
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ing John in the two systems may be different? Aaronson
(1991) describes a connectionist interface that allows two
phase-based modules, each with its own phase structure,
to exchange binding information.

10.5. Memorizing facts: Converting dynamic bindings to
static patterns

In the proposed system, dynamic information is repre-
sented as transient rhythmic activity and long-term mem-
ory is encoded by using “hard-wired” interconnections
between nodes. We have not discussed how appropriate
dynamic information may be converted into, and re-
corded as, synaptically encoded long-term structures. A
specific problem concerns the conversion of dynamic
bindings corresponding to a novel (but salient) fact into a
medium-term fact by converting the set of dynamic bind-
ings into a set of static bindings that last longer than a few
hundred milliseconds (perhaps even days or weeks). This
problem has been addressed in Geib (1990) by using
recruitment learning (Feldman 1982; Shastri 1988a;
Wickelgren 1979) in conjunction with a fast weight-
change process abstractly modeled after long-term po-
tentiation (Lynch 1986). The proposed solution allows a
one-shot conversion of dynamic facts into a structurally
encoded fact in the presence of a “learn” signal. It is
envisaged that subsequently, such medium-term struc-
tures can be converted into long-term structures by other
processes (Marr 1971; Squire 1987; Squire & Zola-
Morgan 1991). The notion of fast synapses proposed by
von der Malsburg (1981) may also play an intermediate
role in sustaining memories that must last bevond a few
hundred milliseconds.

10.6. Learning rules

The problem of learning the representation of rules in a
system that uses a temporal representation is no more
difficult than the problem of learning structured repre-
sentation in connectionist networks. Instead of being
triggered by “simple” coactivation, learning must now be
triggered by synchronous activation. Recently, Mozer et
al. (1991) have demonstrated how backpropagation style
learning may be generalized to networks of nodes that are
essentially like p-btu nodes. We are addressing the prob-
lem of learning in the concept of preexisting predicates
and concepts where it is desired that the cooccurrence of
events should lead to the formation of appropriate con-
nections between predicate arguments. A special case
involves assuming generic interconnections between
predicate arguments, and viewing rule learning as learn-
ing the correct type restrictions/preferences on argument
fillers. This may be achieved by modifying weights on
links between the type hierarchy and the rule component
(see sects. 5.4 & 5.3).
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NOTES

1. For example, sce Allen 1987, Bobrow & Collins 1975;
Charniak 1976; Corriveau 1991; Dyer 1983; Fahlman 1979; Just
& Carpenter 1977; Kintsch 1974; Lehnert & Ringle 1982;
Norvig 1989, Schank & Abelson 1977; Wilensky 1983.

2. That reflexive reasoning occurs spontancously and without
conscious effort does not imply that the agent cannot become
aware and conscious of the result of such reasoning, as in an
agent’s yes response to the question Does John own a car? given
“John bought a Rolis-Royce.” In many situations, however, the
result of reflexive reasoning may only be manifest in the mental
state of the agent. For example, during reading the effect of such
reasoning may be manifest primarily in the agent’s sense of
understanding, coherence (or lack thereof), disbelief, humor,
and so forth.

3. The reflexive/reflective distinction we make here in the
context of reasoning shares a number of features with the
automatic/controlled distinction proposed by Schneider and
Shiffrin (Schneider & Shiffrin 1977; Shiffrin & Schneider 1977;
see also Posner & Snyder 1975). Like automatic processing,
reflexive reasoning is parallel, fast, occurs spontaneously, and
the agent is unaware of the reasoning process per se. However,
the working memory underlying reflexive reasoning has specific
capacity limitations (see sect. 8.2). In formulating the problem of
reflexive reasoning and developing a detailed computational
model for it, we have generalized the notion of automatic
processing by bringing into its fold the more conceptual task of
systematic reasoning.

4. If we assume that information is encoded in the firing rate
of a neuron then the amount of information that can be conveyed
in a "message” would depend on AF, the range over which the
firing frequency of a presynaptic neuron can vary, and AT, the
window of time over which a postsynaptic neuron can “sample”
the incident spike train. AT is essentially how long a neuron can
“remember” a spike and depends on the time course of the
postsynaptic potential and the ensuing changes in the mem-
brane potential of the postsynaptic neuron. A plausible value of
AF may be about 200. This means that in order to decode a
message containing 2 bits of information, AT has to be about 15
msec, and to decode a 3-bit message, it must be about 35 msec.
One could argue that neurons may be capable of communicating
more complex messages by using variations in interspike delays
to encode information (see, e.g., Strehler & Lestienne 1986).
However, Thorpe and Imbert (1989) have argued that in the
context of rapid processing, the firing rate of neurons relative to
their available time to respond to their inputs implies that a
presynaptic neuron can only communicate one or two spikes toa
postsynaptic neuron before the latter must produce an output.
Thus the information communicated in a message remains
limited even if interspike delays are used as temporal codes.
This does not imply that networks of neurons cannot represent
and process complex structures. Clearly they can. The interest-
ing question is how.

5. This observation does not presuppose any particular en-
coding scheme and applies to localist and distributed, as well as
hybrid, schemes of representation. The point is purely numeri-
cal - any encading scheme that requires n2 nodes to represent
an LTKB of size n will require 101 nodes to represent an ETKB
of size 108,

6. This hypothesis does not conflict with the fan effect (An-
derson 1983 see also seet. 8.6).

7. The rules used in this and other examples are only meant
to illustrate the dynamic-binding problem and are not intenced
to be a detailed characterization of commonsense knowledge.

450 BEHAVIORAL AND BRAIN SCIENCES (1993} 16 3

For example, the rule relating “giving” and “owning” is an
oversimplification and does not capture the richness and com-
plexity of the actual notions of giving and owning. ’

8. Although systematicity has broader connotations (e.g., see
Fodor & Pylyshyn 1988a), we use it here to refer specifically to
the correspondence between predicate arguments stipulated by
rules.

9. The symbol V is the universal quantifier, which may
formally be interpreted to mean “for all,” and the symbo!l = is
the logical conncctive “implies.” Thus the statement Vu,v
[buy(u,v) > own(u,v)] asserts that for any assignment of values
to u and v, if u buys v then u owns .

10. A similar formation of “static” bindings occurs in any
learning network with hidden nodes. Observe that a hidden
node at level ! learns to respond systematically to the activity of
nodes at levels I — 1 and below, and in so doing the network
learns new bindings between representations at level ! and
! — 1. These bindings, however, are static, and the time it takes
for them to get established is many orders of magnitude greater
than the time within which dynamic bindings must be
established.

11. Feature binding can be achieved by creating sets of
features such that those belonging to the same entity are placed
in the same set. In terms of expressive power, unary predicates
suffice to solve this problem. For example, the grouping of
features belonging to a “red smooth square” and a “blue dotted
circle” can be expressed by using unary predicates such as
red(objl) /\ smooth(objl) /\ square(objl) and blue(obj2) N
dotted(obj2) /\ circle(obj2).

12. We first described our proposed model in 1990 (Shastri &
Ajjanagadde 1990). An earlier version using a central clock was
reported in Ajjanagadde and Shastri (1989).

13. Asstated in Note 11, unary predicates suffice to solve the
feature-binding problem and the expressive power of the
models cited above is limited to unary-predicates (see Hummel
& Biederman 1991). The greater expressive power provided by
n-ary predicates would eventually be required by more sophisti-
cated models of visual processing.

14. There are other variants of marker passing (seec, e.g.,
Charniak 1983; Hendler 1987; Hirst 1987; Norvig 1989) where
“markers” are even more complex messages containinga marker
bit, a strength measure, backpointers to the original and imme-
diate source of the marker, and sometimes a flag that indicates
which types of links the marker will propagate along. The
marker-passing system has to process the information contained
in markers, extract paths traced by markers, and evaluate the
relevance of these paths. In view of this, such marker-passing
systems are not relevant to our discussion.

15. We can generalize the behavior of a p-btu node to account
for weighted links by assuming that a node will fire if and only if
the weighted sum of synchronous inputs is greater than or equal
to n (see sects. 5.5 & 8.1).

16. In the idealized nodel each argument is encoded as a
single p-btu node and, hence, it is reasonable to assume that a
node may fire in response to a single input. The thresholds of
nodes in the enscmble-based model will be higher and will
depend on the average interensemble connections per node.

17. A constant refers to a specific entity in the domain, the
symbol 3 is the existential quantifier, which may be interpreted
to mean “there exists.” Recall that the syimbol V is the universal
quantifier, which may be interpreted to mean “for all.” Thus the
statement Vx [person(x) = 3z mother{z,x)] asserts that for
every person ¥ there exists some z such that z is the mother of x.
The symbol A is the logical connective “and.”

I8. The system can encode first-order, function-free Horn
Clauses with the added restriction that any variable occurring in
multiple argument positions in the antecedent of a rule must
also appear in the consequent. Horn Clauses form the basis of
PROLOG, a programming language used extensively in artificial
intelligence (see, e, Genesereth & Nilsson 1987,




Commentary/Shastri & Ajjanagadde: Association to reasoning

19. This time consists of (1) lw, the time taken by the
activation originating at the enabler of the query predicate to
reach the enabler of the predicate(s) that are relevant to the
derivation of the query, (2) m, the time taken by the relevant
fact(s) to become active, (3) , the time taken by the active fact(s)
to activate the relevant collector(s), and (4) I, the time taken by
the activation to travel from the collectors of the relevant
predicate(s) to the collector of the query predicate.

20. The closed-world assumption simply means that any fact
F that is neither in the knowledge base nor deducible from the
knowledge base may be assumed to be false.

21. Here we are using concept to refer only to the entities and
types encoded in the hicrarchy. This is not to suggest that
predicates such as give and own that are not represented in the
IS-A hierarchy are not concepts in the broader sense of the
word.

22. In our formulation, cach IS-A link is strict and only
property values are exceptional. This approach for dealing with
exceptional and defeasible information in IS-A hierarchies is
explained in Shastri (1988a).

23. This is required because a fact is true of some entity of
type C if one or more of the following holds: (1) The fact is
universally true of a superconcept of C, (2) the fact is true of
some subconcept/instance of C, or (3) the fact is universally true
of a superconcept of a subconcept/instance of C. The last is
required if concepts in the IS-A hierarchy can have multiple
parents.

24. These times are approximate because the time required
for propagation along the IS-A hierarchy and the rules may
overlap and, hence, the actual time may be less. For example,
the time to perform a predictive inference may also only be
max(l,w, 3l,m). It is also possible for the actual time to be
greater, because in the worst case it may take up to eight cycles
instead of three to traverse an I1S-A link.

25. The number of antecedent predicates (m) in a rule can
also be reduced by introducing ancillary predicates. For exam-
ple, the rule Vx,y,z P(x, y, 2) N Q(x, y, 2) \R(x, 4, 2) > S(x, y, 2)
may be replaced by two rules, each of which has only two ante-
cedent predicates: Vx,y,z P(x, y, ) A\ Q(x, y, z) = SI(x, y, ) and
Vx.y.z SI(x, . z) N\ R(x, y, z) = S(x, y, z). The benefit of reducing
m in this manner has to be weighed against the cost of introduc-
ing an additional predicate in the system. But the savings
outweigh the costs if such a predicate helps in reducing the m
value of several rules.

26. The reasoning system uses the phase of activation to
encode binding information. Hence, in principle the amplitude
of activation could be used to represent the “strength” of
dynamic bindings and rule firings. Note however, that the
amplitude of a node’s output is encoded by the spiking frequency
and the use of varying frequency to encode rule strengths will
interfere with the encoding of dynamic bindings.

27. While the occurrence of synchronous activity is less
controversial, the occurrence of synchronized oscillations in the
animal brain and its representational significance is still a matter
of controversy. More evidence is needed to establish firmly the
role of oscillatory activity in neural information processing.
Some researchers have reported difficulty in demonstrating
oscillatory activity in the primate visual system using static
stimuli (e.g., Rolls 1991; Tovee & Rolls 1992). In this context,
however, it must be recognized that a very small fraction of
neurons would be expected to participate in an episode of
synchronous activity. Furthermore, the grouping of neurons
would be dynamic and vary considerably from one episode of
reasoning to another. Hence, synchronous oscillations would be
very difficult to detect.

28. A more detailed model of such coupling has since been
developed (Mandelbaum 1991,

29. These timings were obtained by analyzing the simula-
tions of the reflexive-reasoning svstem carried out using a
simulation svstem developed by Mani (1991, The simulation

system is implemented using RCS - the Rochester Connection-
ist Simulator (Nigel et al. 1989).

30. The above behavior generalizes the notion of a “strength”
associated with concepts (cf. Anderson 1983) and extends it to
rules, IS-A relations, facts, and even individual static bindings
in the LTKB.

31. The cost of realizing multiple instantiation of concepts is
considerably lower than that of realizing the multiple instantia-
tion of predicates. Thus the value of k; can be higher than three.
Observe however, that &, need be no more than | 7, /w | .

32. There are several ways of encoding the relevant kinship
knowledge. All these pose the same problem, however: The
antecedent of one of the rules contains a repeated variable that
does not occur in the consequent. One possible encoding of the
relevant knowledge is given below (note that Self refers to the
agent and the rest of the names have been chosen arbitrarily to
complete the example). The long-term facts are grand-
father(George, Self), mother(Susan, Self), and father (George,
Susan). The rule is Vx,y,z grandfather(x,y) /\ father(x,z) N\
mother(z,y) > maternal grandfather(x.y).

33. Inaddition to the constraints on the WMRR, the number
of dynamic facts that can be communicated to an agent at one
time will be bounded by the rather limited capacity of the overt
short-term memory.

34. Ullman and van Gelder (1988) treat the number of nodes
required to encode the LTKB as a fixed cost; hence they do not
refer to its size in computing the space complexity of their
system. If the size of the LTKB is taken into account, the
number of processors required by their system tumns out to be a
high-degree polynomial.

35. The relation between our approach and the pattern-
containment approach was pointed out by Geoff Hinton (per-
sonal communication).

Open Peer Commentary

Commentary submitted by the qualified professional readership of this
Jjournal will be considered for publication in a later issue as Continuing
Commentary on this article. Integrative overviews and syntheses are
especially encouraged.

Time phases, pointers, rules and embedding

John A. Barnden

Computing Research Laboratory & Computer Science Department, New
Mexico State University, Las Cruces, NM 88003-0001

Electronic mall: jbarndennmsu.edu

Binding by time phases is an interesting special case of the
following very general (temporary) binding method: To bind two
things, mark them in roughly the same way. Let’s call this the
similar-mark approach. Note that it could apply to nonconnec-
tionist as well as connectionist systems. In Shastri & Aj-
janagadde’s (S&A's) case, we may take the marks to be the
oscillatory patterns of excitation acquired by argument nodes
and so on. Two marks are similar enough to constitute a binding
if they have sufficiently similar phases (and frequencies). So,
S&A’s method is a special case of the approach of temporarily
binding connectionist nodes or subnetworks together by dy-
namically making them hold activation patterns that are similar
enough in some specific sense. That is, the time-phase method
is a special case of "pattern-similarity association” or PSA (Barn-

BEHAVIORAL AND BRAIN SCIENCES (1993) 16 2 451




Commentary/Shastri & Ajjanagadde: Association (o reasoning

den & Srinivas 1991). This is in turn a connectionist special case
of the similar-mark approach.

A benefit of considering the time-phase method in the context
of PSA and similar-mark binding in general is that we see the
close relationship to the technigue of “associative addressing”
widely used in specialized computer hardware as an alternative
to pointers. With this technique two memory areas can be
temporarily “linked” together by placing identical or sufficiently
similar bit-strings somewhere within them. Such a bit-string
extiacted from one place can be used to find the other place or
places that contain that bit-string or suitably similar ones. In
sum, S&A’s system, which is one of the few connectionist
systems that can actually perform inferencing of any respectable
complexity, turns out to rest on a binding scheme quite strongly
related to a conventional computer technique, but without using,
any close analogue of pointers.

We are being led here to the question of what happens to the
notion of a pointer when we move away from computers. This
question is examined to some extent by Barnden and Srinivas
(1991). One can define a pointer in a connectionist system tobe a
temporary system substate (¢.g., activation pattern) that identi-
fiecs a permanently existing place in the system. However,
without specific architectural assumptions we cannot say what a
“place” is, other than by resting on the excessively restrictive
option of a place just being a single node or on the excessively
loose option of a place being any subset of the system’s nodes.
Going back to S&A, if the phase assigned to the John node or
assembly, say, were fixed for all time, then phases could be
regarded as pointers, because they would permanently identify
such nodes or assemblies. However, S&A allow phases to be
dynamically assigned, so they are probably radically different
from “pointers” under any usefully narrow construal of that
word. The signature scheme in ROBIN (Lange & Dyer 1989) is
more pointerlike, because signatures are statically assigned.

One major benefit of similar-mark techniques is that they
allow bidirectional binding in two senses. (1) A binding could be
conceptually bidirectional; one might, for instance, say that if
several S&A argument nodes have the same phase they are
bidirectionally bound to each other. (2) A binding, though
perhaps conceptually unidirectional, could be used bidirec-
tionally. For instance, a node oscillating at a certain phase might
broadcast its oscillation to other nodes, thereby causing similar-
phased nodes to light up in some special way, but the same thing
could be done starting at any of those nodes (sec also Touretzky
1990). By contrast, computer pointers can only efficiently be
used in one direction.

A disadvantage of many similar-mark schemes, however, is
that if a binding is conceptually unidirectional, one nceds
something extra to specify direction. That something could be
highly implicit in the overall system architecture; thus, the
binding between an S&A argument node and the John node is,
arguably, conceptually unidirectional, and that fact is implicitly
respected in the whole way that the system operates. However,
if one needed unidirectional bindings between argument nodes
for some reason, one would need to do something more than
simply give them the same phase.

A concern I have about many connectionist systems, includ-
ing S&A'’s, is that they may face difficulty in encompassing
certain important types of reasoning, including some reflexive
types. S&A claim it is unlikely that the input propositions to
reflexive reasoning episodes can be dynamicaily arising rules. 1
take the point of their syllogism example, but there are more
mundane examples that are not so easily disposed of. For
instance, suppose someone says, “All the people at the party
were toothbrush salespersons. Some of them even had their
sample cases with them.” The obvious inference that those cases
contained toothbrushes seems no less a candidate for being
dubbed “reflexive” than do the inferences in S&A's Little Red
Riding Hood and Colombian drug enforcement ageney exam-
ple. Yet one of the input propositions is the universally quan-
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tificd one about all the people in the room, and this can be
viewed as a dynamically arising rule.

Now suppose someone says, “Tom thought that the milk was
sour, He went out to buy some more.” One needs to be able o
apply the general knowledge that sour milk tends to be unusable
for certain purposes, together with Tom's reported thought, in
order to understand Toin's motive in going out for more milk. 1s
such reasoning not reflexive? That is, T am suggesting that input
propositions and reasoning cpisodes involving them can be
embedded in propositional attitude contexts (among other sorts
of context, such as counterfactual ones) without making the
reasoning nonreflexive. This makes the task of connection-
istically implementing reflexive reasoning vet more complex.

Ewmbedding and dynamically arising rules are discussed fur-
ther in Barnden (1992, pp. 149-78). Because very few workers
in connectionism, or indeed crities of connectionisin, have even
paid lip service to the issues, my comments are hardly a strike
against S&A specifically.

Plausible inference and implicit
representation

Malcolm . Bauer

Department of Psychology, Princeton University, Princeton, NJ 08544-1010
Electronic mall: malcoim( clarity.princeton.edu

Shastri & Ajjanagadde’s (S&A's) distinction between reflexive
and reflective reasoning is similar to the distinction between
implicit and explicit reasoning made by Johnson-Laird (1983).
Implicit reasoning is rapid. effortless, and occurs outside con-
scious awareness. It is basically model building without the
deliberate search for alternatives. Explicit reasoning requires
deliberate, conscious effort and calls for the search for alterna-
tive models that may invalidate an inference. S&A's work is
hence an attempt to create a detailed account of implicit reason-
ing. They accordingly write that their system “simulates the
behavior of the external world and dynamically creates a vivid
model of the state of affairs resulting from the given situation”
(sect. 3.4). This is an important and innovative area of rescarch
but there are some weaknesses in their theory.

First, S&A avoid the important question of how people make
a limited number of plausible inferences from the vast set of
possible inferences. From any premise, there follow an infinite
number of valid deductions and inductive hypotheses (for exam-
ple, continually conjoining the premise with itself generates a
countably infinite set of valid deductions). The mechanisins by
which people reason must greatly constrain the inferences they
draw. For example, Johnson-Laird (1988) proposes that when
people make deductive inferences they draw conclusions that
maintain the semantic information in the premises, and when
they make inductive generalizations they draw conclusions that
increase semantic information. S&A avoid the issue by hand
coding only those inference patterns they judge to be plausible.
Given the premise “John gave Mary bookl” S&A decide that
“Mary owns hook1” and “Mary can sell bookl™ are two plausible
inferences. However, the constraints on which inferences are
drawn are not part of their theory, but are in the heads of the
rescarchers.

Sccond, $S&A's notion of “model” is problematic. Maodels
capture the structure of the world. One can perform analogons
operations on models and make inferences about the state of the
world from the new state of the model. Animportant property of
maodels is their ability to represent information implicitly. In <o
doing, models can represent whole classes of inferences that cas
be made explicit, if needed, with further reasoning. This kind of
representation is guite different from encoding sclected plansi-
ble inference patterns as in S&A's system. S&A imply that a
model is a finite collection of plausible inferences that may be
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drawn about a situation. When a situation is partially d.:scribed,
the system constructs a chain of inferences. For example, from
the premise “John drove from his house to the store” some
plausible inferences that follow are, “John left his house™ and
“John arrived at the store.” Equally plausible, though, are
inferences such as “John drove at least halfway to the store,”
“John drove at least { of the way to the store,” and “John drove at
least §th of the way to the store,” and so on. In S&A’s system, a
complete model of the situation would consist of an explicit
representation of all of the above inferences and an infinity of
other inferences that follow. {See also BBS multiple book review
of Sperber & Wilson’s Relevance: Communication und Cogni-
tion, BBS 10(4)1987.] Although it is clear that people can
determine the validity of these inferences, it is unlikely that
they construct explicit representations for each of the potential
inferences. A model of the premise “John drove from his house
to the store” is not a series of plausible inferences that follow
from it, but rather a representation that captures the structure of
John driving from his house to the store. Although an infinite
number of inferences follows from this model, reflexive reason-
ing does not involve constructing all the plausible inferences;
rather, it entails constructing a model that represents the
situation from which relevant inferences could be drawn as
necessary.

In summary, Shastri & Ajjanagadde must overcome these two
problems (the lack of a theory of plausible reasoning in the
inference mechanism and the inability to represent information
implicitly) to make their theory a more credible account of
human reflexive reasoning.

Could static binding suffice?

Paul R. Cooper

institute for the Learning Sciences, Noiihwestern University, Evanston, il
60201

Electronic mail: cooper@ils.nwu.edu

Dynamic variable binding is widely accepted as a serious chal-
lenge for connectionists. Shastri & Ajjanagadde (S&A) have
more than met that challenge here: This is an elegant proposal
with appealing performance characteristics (e.g., independence
of the size of the knowledge base) and equally appealing compat-
ibilities with results from psychology and neuroscience. But the
endeavor of addressing the challenge directly, as well as the
character of the resulting solution, provokes the desire to recon-
sider alternatives to a frontal attack on variable binding and rule-
oriented reasoning.

If S&A’s solution works and is even elegant, why bother to
worry about whether there is more to consider? First, possibly
the most interesting question for the connectionist enterprise is
this: How much can be done in parallel? The traditional connec-
tionist approach when cross-talk appears inevitable is to share
net resources in time. Although S&A’s solution can hardly be
construed as “sequential,” it does exploit some time sharing.
Improvements may be possible.

Second, S&A’s contribution is motivated in 'arge part by a
desire to provide a connectionist explanation for traditional rule-
oriented rcasoning. There are two dangers here. What if rule-
oriented reasoning turns out to be unimportant? It is at least
conceivable that an alternative paradigm such as case-based
reasoning (Riesbeck & Schank 1989) may be more useful, with
dynamic variable binding possibly irrelevant. Another possi-
bility is that although some rule-oriented reasoning may be
necessary, a full-fledged treatment of n-arv predicates is unnec-
essary and counterproductive, therefore, much more restricted
mechanisms may be sufficient.

Constraints and feasibility. So-called static binding may suf-
fice to explain most reflexive reaconing, despite appearances to

the contrary (sect. 2.1.1). The essence of the binding problem is
associating an argument and filler, or variable and value in the .
general case. The static-binding solution requires the existence
of a unit for every feasible pairing of variable and value. Such
“binder” units and their connections are stable long-term fea-
tures of the network; thus, “static.” However, it is their activa-
tion that indicates the presence of an actual binding. Thus, the
static-binding solution is in general capable of dynamically
associating variables and values during the course of a com-
putation.

Knee-jerk objections to this idea, motivated by the counterin-
tuitive nature of unit/value connectionism (Feldman & Ballard
1982) and the seeming inability of a static structure to support
universal, general-purpose problem solving, can be discounted.
Even the most simplistic scheme, allowing each of the n entities
in memory to associate with any of the others, requires only
O(n?) nodes. But is even n? too large? It is on this point that even
carcful connectionists seem to run aground; indeed, this is
apparently one reason why Shastri, whe in earlier work ex-
ploited static binding (1988a), developed the current work. The
value of n can certainly be expected to be 105 or better, which
makes n? too large compared to the available resources in the
brain.

This analysis is too simplistic, however. Static binding re-
quires only that we use a unit for every feasible pairing of
variable and value, or argument and filler. If feasible values for
variables are restricted by exploiting any kind of type or cate-
gory knowledge (see also sects. 2.4 & 5.4) and if binder units are
only allocated for feasible values, the number of required units
reduces dramatically: Cooper and Swain (1992) work this idea
out in some detail, for example, for a massively parallel imple-
mentation of arc consistency. If we limit the number of values
per variable to a reasonably large but fixed maximum, the total
number of binder units required is linear in the number of
variables in memory. In other words, it would not be unreason-
able to assume that the node requirement of static binding is at
least close to linear in the size of the knuwledge base, and
certainly much less than n2. Hence static binding can support
the basic task of associating simple variables and values.

The feasibility of static binding becomes less obvious given
the necessity to reason about combinations or compositions of
simple primitives. On one hand, it is obvious that any value-
based encoding just cannot represent all the potential combina-
tions, of arbitrary order, that may occur. On the other hand,
solutions exploiting only low-order combinations, particularly
pairs (e.g., Feldman 1985), may suffice to explain the simpler
tasks solved in “reflexive” as opposed to “reflective” or overtly
sequential reasoning (which would be an interesting result in
itself). Complex tasks apparently requiring “systematicity” and
“composition,” such as the recognition of structurally composed
objects, are also achievable in this way (e.g., Cooper 1992).
Finally, the propagation of bindings hardly poses an insur-
mountable problem. It is exactly the propagation of constraints
that forms the basis of the relaxation process used by most
connectionist networks.

Possibly the subtlest issue concerns representing truly novel
associations. Clearly, associations exist that a restricted static-
binding network cannot represent. Representing such associa-
tions requires structural changes to the network learning. But
hard learning of entirely new concepts is hardly “reflexive”
reasoning. It requires time, repetition, attention, reflection,
and so on. Thus, it seems reasonable to assume that such hard
structural learning may require special-purpose  neural
machinery.

To sunmimarize, it is tempting to suppose that Shastri &
Ajjanagadde have developed the “last word” on variable bind-
ing, and that this irksome challenge can at last be put to rest. But
the possibility of simpler, faster, and more parallel methods has
not vet been ruled out. The overall point here is hardly irrele-
vant. That is, if we ignore the crics of variable-users to explain
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how to replicate their results and we try hard to construct
systems that solve hard Al problems while avoiding the obvious
exploitation of arbitrary high-order combinations and frequent
binding of novel values to variables, we may end up with some
very interesting results indeed.

From symbols to neurons: Are we there yet?

Garrison W. Cottrell

Computer Science & Engineering Department 0114, University of
California, San Diego, La Jolla, CA 92093

Electronic mail: gary@cs.ucsd.edu

Shastri & Ajjanagadde’s (S&A's) target article proposes two main
ideas, the direct embodiment of a subset of formal logic as
structured associations between predicates, and the solution to
the binding problem through phase labeling of entities. Thisisa
truly novel solution to the binding problem: The phase-labeling
approach avoids the trap of combinatorial space requirements
implied by systems that “connect” the two entities through a
path in a network. When 1 first saw this work, for a fleeting
moment, [ wanted to become a localist again.

Having caught myself at the brink, my critique will focus on
the logical inference side of the system. The notion of embodied
inference is not novel (Cottrell 1985; 1989; Hebb 1949; James
1890; Lange & Dyer 1989; Shastri 1988b; Touretzky & Hinton
1988), but the current system claims to achieve better efficiency
and coverage. I will consider three aspects: technical adequacy,
neurological plausibility, and finally, the pattern-containment
alternative.

Technical adequacy. It is unclear from the target article
whether the quite complicated specific wirings used by this
model correctly implement the inferences S&A say they do. For
aformal system, one usually wants to prove soundness (that only
inferences that are entailed by the facts can be derived).!
Correspondence with the first author has allayed several of my
fears, but the burden is on the authors to prove that this complex
system does not make incorrect inferences. The matter cannot
be decided by inspection.

A second worry is the lack of expressiveness. It appears that
negation cannot be represented, as it has not even been men-
tioned in the text. To address this, for every predicate P, one can
simply add another node (or, in this case, a set of nodes) to
represeit the predicate ~P. Inferences involving ~P are then
driven by activation from this node. A consistency gadget
between P and ~P can be constructed to enforce that they do not
both fire when the network has settled. This is the solution used
in the Spock system (Cottrell 1985; 1989), which implements
Reiter’s Default Logic for inheritance (Etherington & Reiter
1983). In S&A's system, the consistency gadget will also have to
enforce that the bindings of the two representations of the
predicate are the saime when enforcing consistency (Spock is
propositional).

S&A's claim that they can add defaults (sect. 5.5) and combine
the forward and backward systems (sect. 3.5) merits further
inspection. Care must be taken that added expressiveness not
detract from the efliciency of the system. in the Spock system, 1
found a classic example of the expressiveness/tractability trade-
off (Levesque & Brachman 1983). When the ability to compute
the contrapositive is included in the representation (adding P —
Q implies ~Q — ~P is encoded also) there exist sets of facts
where mixtures of defaults and first-order rules cause long
settling times for the network even when there is only one
consistent extension. This was due to the backward svstem
inferring - P's (begun by a short defanlt inference} while the
forward svstem was inferving P's through the same fong chain
from the other end. Many iterations were necessary to resolve
the conflict. However, inaversion where activation was allowed
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to spread more permissively (dubbed Dr. Spock), settling times
were more reasonable due to leakage of consistency information
through the network. The use of graded evidence in the current
system to pick the best solution could alleviate this potential
problem.

Finally, one wonders whether the benefits of being able to
express propositions about types (sect. 5) is worth the cost of
adding another system (the 15-A hierarchy) when inheritance
can be expressed as repeated applications of logical inference
(Hayes 1977).

Neuroscientific plausibility. From the point of view of model-
ing the brain, this architecture requires a suspension of disbelief
about how such a system could have been produced by evolu-
tion. This criticism is weak because it is founded on an argument
from lack of imagination. However, in order for this system to
work properly, highly specific connections must be formed from
the nodes representing the concepts to the connections be-
tween antecedents and consequents. Things get more compli-
cated when one wants to introduce constants as in Figure 14, or
multiple arguments as in Figure 15. Learning in such structured
networks uses a recruitment rule (Valiant 1988), where preexist-
ing connections between the appropriate units gain force. In
S&A’s case, there must be preexisting connections from every
potential concept to connections from every potential predicate
to fact nodes, which leads to another combinatorial explosion.

The pattern-contalinii inference alternative. The possibility of
a system of pattern-containing inference (sect. 9.4) is a useful
one to pursue. This is the idea that a system of embodied
inferences like the one proposed in the target article could be
counstructed that passes distributed patterns of activation from
antecedent to consequent in slots for the arguments. It is clear
that pattern-containing inference could also use the phase-
labeling mechanism to maintain multiple separate bindings for
the same pattern.

There are interesting advantages to using pattern-containing
embodied inference rules: (1) It should be possible to learn rules
using back propagation or some similar technique between
antecedents and consequents; (2) semantic filters would be
embodied in the associations: The copy of predicate arguments
from antecedent to consequent is essentially through an autoen-
coder network (e.g., as in Hanson & Kegl 1987), thus only
patterns similar to the ones that have appeared in exemplars
would be allowed through. Semantic restrictions on arguments
would therefore be handled completely locally, based on experi-
ence with this inference, rather than on constraints that must be
enforced by connections from the IS-A system, as S&A propose.
This is inherently more efficient. Also, covariance constraints
between arguments would naturally be enforced.

Whether or not one rejects Shastri & Ajjanagadde’s system for
the above reasons, it is an undeniable achievement of this work
that it has brought to light a bold new idea for solving the
binding problem with processes available in the brain. The
notion of phase labeling of entitics is a powerful one, and here for
the first time we have a demonstration of its viable use.

NOTE
1. Completeness (that all sound inferences can be derived) is not at
issue here.

Making a middling mousetrap

Michae! R. W. Dawson and Istvan Berkeley
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Famerson once noted that "if wman . . make a better mouse-
trap than his neivhbor. thongh he build his house in the woads.
the world will make a beaten path to his doov.” Shast &
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Ajjanagadde (S&A) must clearly be expecting a lot of company at
their house in the woods, for they not only believe that they have
built a better mousetrap — an effective and systematic reasoner —
they also believe that this mousetrap is of a different kind - a
rule instantiating, biologically plausible connectionist device. A
closer scrutiny of their model reveals, however, that not only is it
the same type of mousetrap that classical Al has been springing
for decades, but that it is also not quite as good.

Three different weaknesses suggest that the proposed model
is classical in nature. First, the target article argues that the
reflexive reasoner does not require a central controller, in
contrast to classical systems. This cannot be true. The system
can only be understood as providing a yes/no answer to ques-
tions like, “Can Mary sell Book1?” by having an external control-
ler that understands (and remembers) the original question, and
also knows that a response will be encoded as activity in ¢:can-
sell. The system cannot autonomously make sense of the bloom-
ing, buzzing confusion of its own activity. For instance, Figure
13 illustrates that at one point in time the nodes c:can-sell,
c.own, and c:give (representing different possible answers), and
the nodes e:can-sell, e:own, and e:buy (representing different
possible questions) are all simultaneously active. Asa result, the
network cannot “know” what answer it is giving, nor the original
question that was posed, without external interpretation.

Second, the target article argues that the reflexive reasoner is
not a classical system because it is rule instantiating. This
amounts to a standard connectionist claim that network archi-
tectures do not clearly demarcate processes from data structures
{Dawson & Schopflocher 1992). This claim is clearly not true of
the proposed model: The rules governing system inferences are
qualitatively different and are represented separately from the
data structures being processed, as S&A conveniently illustrate
with the “squiggly line” in Figure 19.

Third, it is claimed that the reflexive reasoner — unlike
classical systems — is biologically plausible. This too is far from
established. Although it is quite interesting that temporal syn-
chrony has been observed in the cortex, many more specific
claims are not defended in the target article. Several different
and highly specific neural circuits are proposed (c.g., Figures
14, 21, 23, 25). In addition, a number of qualitatively different
processing units — including three different kinds of tau-or units
~ are required. A great deal of further evidence from ncuro-
science is needed to support such claims.

Biological plausibility is further weakened in the context of
speculations about how the network might learn facts or rules. If
the learning of facts requires the presence of an external “learn”
signal, then this strongly indicates that the network is not
autonomous and thus is far from being ncurally plausible. In
addition, although it may be true that the learning of rules in the
reflexive reasoner is no more difficult than learning in nontem-
poral connectionist systems, it is certainly biologically implausi-
ble — particularly if backpropagation is used (sece Grossberg
1987).

The three arguments above suggest that the proposed model
is not a mousetrap of a different kind. But is it a better mouse-
t-ap? Although S&A have shown that a number of the functions
found in traditional reasoning systems can be implemented by
their novel parallel architecture, their network suffers from
some severe logical limitations. Regrettably, these serve both to
compromise its inferential power and to cast further doubt upon
its putative biological plausibility.

The proposed model has two significant difficulties in dealing
with variables that occur in multiple argument positions. First,
in backward reasoning it cannot use rules in which a variable
occurs in multiple argnment positions in a rule’s antecedent
when the variable does notalso appear in the rule’s consequent.
Second. in forward (or predictive) reasoning, rules in which
variables occur in multiple argument positions in the conse-
quent cannot be used unless those variables are also present in
the antecedent of the rale and wre bound in the reasoning

process. Although these two limitations are acknowledged in the
target article (sect. 8.2.5), S&A fail to note the full extent of the
problems they produce (e.g., with respect to reflexivity).

These are not the only logical difficulties from which the
system suffers. For example, the proposed IS-A hierarchy
cannot handle facts or queries in which existential quantifiers
fall within the scope of universal quantifiers. More significant,
the network has considerable difficulties in handling multiple
instantiations of the same predicate (it also has some lesser
difficulties with multiple instantiations of the same concept).

To provide a convincing solution to the latter problems, a
considerable number of additional nodes would be required.
Unfortunately, this would slow the system’s performance signifi-
cantly. As a result, S&A compromise and limit the number of
multiple instantiations of predicates to just three. However,
they do not offer any evidence that this limit is either biolog-
ically or psychologically plausible. As this limit is critical for
calculating the latency of network operations, their claims about
the biological plausibility of the system’s speed must be treated
with a degree of suspicion.

This difficulty, considered in conjunction with the other
logical limitations of their network, gives grounds for believing
that the proposed model is in fact less powerful than traditional
systems. For example, none of the logical limitations mentioned
above affect the classical backward-reasoning system described
by Pelletier (1982). In short, Shastri & Ajjanagadde have not
built a better mousetrap — perhaps they should get a cat!
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Shastri & Ajjanagadde’s (S&A's) approach is remarkable in many
ways. They offer efficient reasoning in a connectionist knowl-
edge representation system. This representation system has an
expressiveness that facilitates the realization of a number of
knowledge structures (frames, scripts, etc.). Furthermore, they
present a model that makes a number of predictions about
psychological processes and therefore allows experimental veri-
fication (or falsification). But most important, S&A attempt to
close the gap between high-level reasoning and neural process-
ing and show how “reflexive” inferences can be drawn efficiently
with slow neural elements.

It is natural that a model that covers a wide range of phenom-
ena cannot be equally specific and appropriate in every detail. A
few points that deserve attention should be mentioned.

Learning. S&A do not provide an answer to the question of
learning. Although this seems to be a rescarch strategy that is
generally accepted in the Al community, the lack of learning is a
problem for S&A (sections 10.5 & 10.6 speak about learning in
very vague and general terms). In their model, reasoning is
based on complex, domain-dependent networks and it is an
important question how these network structures are gener-
ated. In particular, if S&A extend their claim of neural plau-
sibility to learning, they should answer the question of how
complex network structures can be generated based on biolog-
ically plausible, namely sparsely connected, neural networks
(Dicderich 1992; Stevens 1989). Furthermore, although in their
model limited reasoning can be done efficiently. the generation
of the networks that allow these reasoning processes can be
complex or even hard.

't
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Recent neurobiological findings have shown that there are
considerable changes in the receptive field organization of
cortical cells in adult cats and primates (¢f. Merzenich et al.
1988). These changes are triggered by the absence of input
(Cilbert & Wiesel 1992; Merzenich et al. 1988) or experience
(e.g., tactile stimulation, Merzenich ct al. 1988). These pro-
cesses are relatively fast. The modification of the receptive field
organization of cells can be noticed within a few minutes.
Gilbert and Wiesel (1992, p. 152) assume that dynamic changes
in receptive field structure may occur continuously during
normal vision.

On the connectionist level, these processes are modeled by
“recruitment learning” methods. Adding learning techniques
such as recruitment learning to S&A’s model can help to replace
some artificial components of the system, for example, the
switching devices and the allocation of free memory banks
for multiple instances, with biologically plausible, structure-
changing leaming methods.

Grounding. Over the past several years several authors (e.g.,
Pfeifer & Verschure 1992) have pointed out that we cannot
understand a cognitive system without a connection to sensory
experience. That is, mental states (instantiated predicates in
S&A's system) develop out of real interactions with the physical
world. The important point is that it is not sufficient to link a
high-level reasoning system with a sensory system in order to
realize such a connection, but that the conceptual representa-
tion itself is the result of interactions with the environment and
includes sensory pathways that are at least partially modified by
experience. A connectionist reasoning system without any
learning does not allow concept formation in this sense and is
therefore restricted as a psychological model.

Neural plausibility. Although some aspects of the model are
biologically plausible (synchronous activity, fast response times,
ctc.), some components are purely functional elements. The
“enabler” and “collector” units as well as the “r and” and “7-or"
units are used to allow reasoning and are not immediately
plausible neural elements. The same holds for the connectivity
pattern for long-term knowledge base (LTKB) facts. As a matter
of fact, the unit types and network structures are excluded from
the discussion of biological plausibility (section 7 speaks about
“synchronous, rhythmic activity” only). It is possible to find
neurobiological evidence for “relay units,” and so on (cf. Singer
1987), and therefore the claim of biological plausibility can be
extended. Network elements such as unit types and connection
patterns must be part of the discussion of neurobiological
plausibility.

S&A refer to neurobiological findings that the temporal syn-
chronous activity of cells in the cat’s visual cortex supports the
dynamic binding of visual features of objects. In other words,
the temporal synchrony of neural firings supports pattern recog-
nition and vision. What about explicit, reflexive reasoning? It is
not at all obvious that the neurophysiological evidence for the
dynamic binding of visual features carries over to multistep
reasoning.

Conclusion. Biological plausibility, efficient reasoning, and
the ability to make a number of predictions that allow psycho-
logical testing are the outstanding features of Shastri & Aj-
janagadde’s system. The absence of learning is disappointing
and it is an important question how complex network structures
can be generated efficiently with biologically plausible, connec-
tionist methods. Apparently, there is work on the way on
learning and an application of the system to natural language
processing. This future work will show if some of the remaining
problems can be solved.
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Shastri & Ajjanagadde (S&A) have done a remarkable job in
modeling certain aspects of reflexive reasoning. However, some
evaluation of their representations, as well as their solution to
the binding problem, seems appropriate to put S&A’s model in
perspective with respect to its being “connectionist.”

The motivation for S&A’s introducing the idea of synchronous
firings of nodes was the so-called binding problem. Even though
this problem was pointed out early (see their references in sect.
2.1.1), it has really been brought into the foreground in the light
of critiques of connectionist representations in neural networks
(Fodor & Pylyshyn 1988b). According to these critiques, con-
nectionist patterns of activation are merely sets of numbers
lacking any structure. They therefore cannot naturally repre-
sent complex conceptual relations where different concepts
have to be bound to their roles. In classical Al, due to the
prevalent use of syntactic symbol structures, this was a non-
issue. There, binding can easily be defined by assigning roles to
syntactic position. S&A’s response to the binding problem in
connectionist networks is as remarkable as it is powerful, but it is
also a very “classical” one. Defining binding through syn-
chronous firings of nodes is identical to the syntactic solution in
traditional Al systems. The remarkable thing about it is that the
representation is moved into the temporal dimension. An exam-
ple: Having p-seller and Mary, as well as cs-obj and Bookl fire
synchronously, respectively (example from sect. 3.1), is the
same as representing this relation by using pairs of symbols in
parentheses, meaning that the concepts in each pair are bound,
for example ((p-seller Mary)(cs-obj Bookl)).

The difference is that here only the spatial dimension is used
for concatenating symbols, something that is obviously not
possible in common neural networks (as units in a network
cannot be repositioned). Now ((p-seller Mary)(cs-obj Bookl))
does not seem to be the usual way of defining relations in the
symbolic approach, as often a simpler form is used, such as can-
selliMary, Bookl). The binding in the latter representation is
defined by implicitly assigning the two roles p-seller and cs-obj
to the first and second position in the predicate, respectively.
This may be possible in S&A’s approach as well (such as defining
that the first concept firing is the p-seller, and the second one
the cs-obj), but it would make many things (such as mapping
corresponding roles in different predicates) more difficult. In
conclusion, we can say that S&A's solution to the binding
problem is the syntactic solution of expressing concept rela-
tions, exploiting the temporal dimension in a clever and, as it
turns out, even in a neurally plausible way.

Recent literature, however, has suggested that the syntactic
solution need not be the only one (e.g., van Gelder 1990). it just
happened to be the obvious one for symbolic models. Connec-
tionist models — if taken in 2a much more general sense than in
S&A’s work ~ have the power to represent conceptual structures
in a nonsyntactic, that is, superpositional way (Chalmers 1990;
Pollack 1990; Sharkey 1992). The problem with the literature on
this topic is that most such approaches are tested on problems
equivalent to what the syntactic solution can achieve (e.g.. the
transformation of parse trees, as in Chalmers 1990). Thus T will
bricfly report results from our own work, which demonstrate
that the superpositional way of representing compositional
structure can lead to a much bigger step toward neurally and
psychologically plausible models of reflexive reasoning.

The key to such a further step is what we call “soft componsi-
tionality.” Connectionist literature on concept formation and
distributed representations has shown that nenral networks can
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implement “soft” concepts (Hinton 1986; Smolensky 1988) and
rules (McMillan et al. 1991). Both can be viewed as fuzzy and
analog entities which only in certain situations become discrete
(e.g., in the process of unambiguous recognition of objects).
S&A's model, on the level of single concepts and rules, could be
viewed as a post-hoc approximation of such concept structures,
explaining the situations where their discreteness counts. We
want to argue that this cannot easily be said about bindings of
concepts to their roles, as there should be a continuum between
composite structures consisting of several concepts and their
roles, on one hand, and holistic unstructured concepts, on the
other.

Consider the following example of objects and their spatial
relations to cach other. Suppose 1 enter a room that contains,
among other objects, a table with a chair on top. It is clear that I
could represent this by a structure like on-top(chair, table) or
((chair upper)(table lower)). But when I have to rcason reflex-
ively, it will depend on the situation whether it really matters
that there are two objects in a relation to each other. If 1 want to
screw in a light bulb, I might deal with the whole thing as one
concept (such as ladder). If ny goal is not to bump into anything,
it might be no concept at all, only a “fuzzy blob” causing some
motor reaction. The hypothesis now is that in reflexive reason-
ing (exactly the kind S&A want to model) there can be a
continuum between complex structures and holistic concepts in
the representations used for reasoning. In other words, some-
thing might be represented best as a complex structure, as one
whole, or as anything “in between.” The important situations
are the latter ones. I might have screwed in the light bulb and
gone out of the room inclined to say that I dealt with one object
in there. The question “Isn’t there anything I can sit on?”
however, can push my vague compositional representation of
the two objects above threshold to permit the answer “yes, 1
guess I saw a chair on top of something clse” (perhaps adding,
“or was it underneath?”). In syntactic models such as S&A’s,
complex predicates are always complex predicates, and roles are
always distinct. S&A do hint about a “soft” variant of rules (sect.
5.5), but “soft” compositionality in our sense would go beyond
that, in that the existence of roles itself can be fuzzy and analog.

Dorflner and Rotter (1992) present alittle model that, in a first
step, partially achieves “soft” compositionality. It is based on the
so-called binding vector (BV, Rotter & Dorflner 1990), which
achieves superpositional representations similar to RaaM (Pol-
lack 1990), but without prior learning. By starting with spatial
relations and sensory input it also accounts for learning and
grounding (another aspect where S&A have disappointingly
little to say). The most interesting aspect with respect to S&A’s
work is that binding in the BV is also achieved by synchronous
activation of concept and role. The difference is that after this,
activations are sustained and superimposed onto each other and
thus do not need to stay distinct.

In final conclusion, I want to argue that S&A’s model of
reflexive reasoning falls short of what other types of connection-
ist models could be capable of achieving. To be honest, research
in self-organizing, distributed networks is still in its infancy and
cannot directly compete with systems as complex as the ones
S&A propose. Most of what has been said here must therefore
remain a claim people working on those models will have to live
up to. If they will, we could say that S&A’s model, although
powerful in many respects, is still much more symbolic than it is
connectionist.
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Does the S&A model use binding mechanisms similar to those of
the brain? It is not clear from our experiences with the visual
cortex whether the model of Shastri & Ajjanagadde (S&A) will
still function as required if ncural network dynamics are in-
cluded that are similar to those of cortical neurons. This is called
into question when we compare the rhythmic activities of the
model and that of a real cortex. The most striking differences are
the completely different dynamics (Eckhorn et al. 1988; 1990).
Although the S&A model uses a simple phase-delay scheme for
labeling and binding different entities and although it is driven
by a rhythmic input, synchronized oscillations in the cortex are
probably due to a self-organizing process among mutually
coupled neurons; systematic, stimulus-specific phase delays of
simultaneously occurring oscillatory events have not been ob-
served to date. The relatively stable phase delays that have
frequently been observed in about 10% of our recordings,
however, did not occur in a stimulus-specific way, as would be
required for bindings of entities in the S&A model. We can
explain them as phase differences between signals from excita-
tory and inhibitory neurons that are locally coupled and in-
volved in the generation of oscillations in the respective local
assembly. In addition, oscillatory events (spindles) in the cortex
are highly variable in their frequencies, amplitudes, durations,
and delays in contrast to the signals in the S&A model.

The impressions from our observations of synchronization
processes in the visual cortex and from our related neural
network models suggest the following signal dynamics suitable
for transient bindings of representations: The cortex may be able
to represent a large number of entities nearly simultaneously by
forming synchronized oscillations of short durations and vari-
able frequencies in many different assemblies. Such oscillatory
events are statistically independent in their signal courses as
long as the entities they represent do not belong together.
However, oscillatory active assemblies that are coupled by
(mutual) connections can transiently form common oscillatory
states of zero-phase difference by mutual synchronization and
they may define by this process the transient binding between
different entities. Such types of binding do not require distinct
phases for distinct entities. Instead, entities may be defined by
the internal coherence of the signals in a subassembly, and
binding between subassemblies may be defined by the degree
of transient signal correlation between signals of different
subassemblies.

In addition to rhythmic synchronization, nonrhythmic synchro-
nization might support dynamic binding. The binding process
described above does not rely on rhythmic signals. Instead,
nonrhythmic signals might introduce even higher degrees of
frecedom and thereby allow binding between more distinct
entities (in the sense of the S&A model). This means that
dynamic bindings might be achieved more generally by tran-
sient correlations between signals of any type, including oscilla-
tions as a reasonable case. In particular, irregular signals seem to
be highly appropriate for the labeling of related entities, as has
been shown in models of visual scene segmentation (Pabst et al.
1989). Participation of nonoscillatory signals in dynamic bind-
ings is further supported by our observation that in the visual
cortex oscillation spindles can be partially or completely sup-
pressed by transient stimuli that drive cortical neurons of similar
tvpes synchronously in a stimulus-locked manner (Kruse et al.
1992). For these cases we have proposed that stimulus-locked
svnchronization serves for the transient binding (Eck worn et al.
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1990). This view is supported by everyday experience. Strong
transient visual stimuli can be perceived rapidly, even in com-
plex visual scenes, much faster than the cortex would require to
generate several periods of a 40 or 50 Hz oscillation.

Neurons can process and transmit sutficient rates of informa-
tion for the representation and routing of complex dynamic
bindings. 1t is stated in S&A's introduction that neurons are slow
computing devices and that they communicate relatively simple
messages that can encode only a few bits of information (2 bits in
15 msec). This led S&A to the conclusion that a neuron’s output
cannot encode names, pointers, or complex structures that
would be necessary, for example, to form dynamic representa-
tions and to propagate (route) them into specific directions.
However, S&A may have underestimated the amount of trans-
mitted information because they used a frequency code. Being
aware of this, they added the arguinent that even if interspike
delays are included in ncural coding, the time available for a
neuron to respond to its inputs is very limited, and so is the
amount of transmitted information, because a presynaptic neu-
ron can only communicate one or two spikes to a postsynaptic
neuron before the latter must produce an output (see note 4).

These arguments do not convince us. First, a single cortical
neuron generally has thousands of synapses at which one or two
spikes can appear within a few milliseconds, leading to a com-
plex time course of the postsynaptic potential with generally
high information density. Sccond, signal processing in cortical
neurons is not terminated by the generation of an output spike,
because spikes generally do not “reset” the membrane poten-
tial, as can be seen directly in intracellular recordings from
cortical neurons (e.g., Douglas et al. 1991). In addition, it has
been shown rigorously that information rates in sensory and
motor systems of mammals reach values of 300 bits/sec on a
single nerve fiber if codes are chosen that match the signal
transfer properties of the respective neurons (Eckhorn et al.
1976). This is equivalent to average information rates of 4.5 bits
in 15 msec. However, if one calculates the actual time courses of
information, rates of 6 bits in 15 msec often occur (Eckhorn &
Poepel 1975). Such high rates in single neurons are assumed to
be sufficient for the signaling of complex messages, including
the routing of dynamic representations.

Much higher rates of information would be available at the
“nodes” of the S&A model if the functional units of the nodes
were realized by local groups of similar neurons. Such local
ensembles might use probability coding on parallel output
fibers, namely, the probability of discharge of any of these
neurons would be the (quasi analog) signal that transmits the
information of the ensemble. Information capacities in such
systems using group codes can reach much higher values than
those on single fibers because noise is reduced with increasing
size of the group. If. for example, intrinsic neural noise is
statistically independent (in the idcalized case), then groups of
N = 100 ncurons can transmit information rates that are higher
by a factor of 10 than those of a single neuron (proportional to the
square root of N).

Although S&A’s arguments for labeling and routing of com-
plex representations by simply synchronizing the appropriate
“nodes” are convincing for me, I would like to stress the point
that at least in principle, other mechanisms might be used,
because neurons have the capacity of signaling high rates of
information during short intervals. In the S&A model the
propagation time for a svnchronized state to the next node
requires about 20 msec, which is the cvele time observed in
stimulus-induced oscillitions (Eckhorn et al. 1988; Gray &
Singer 1989). During 20 msece 8 bits can already be transmitted
by a single real neuron, which is enough for signaling about 500
alternative states (cach available for the communication of
BAMES Or pointers.,
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Toward a unified behavioral
and brain science

Jerome A. Feldman
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It is still commonplace to identify connectionist (or neural
network) models with initially unstructured systems that are
adapted through supervised or unsupervised learning. Shastri
& Ajjanagadde’s (S&A's) target article indicates how much richer
the paradigin can be. What 1 find most remarkable is the
progress that has been achieved in the first decade of the new
wave of connectionist research. The central technical issue in
this paper, connectionist variable binding, was viewed as intrac-
table only a few years ago but now has a variety of competing
solutions as outlined by S&A. And these solutions are no mere
implementation of formal logic ~ the representations preserve
many of the key computational advantages of connectionist
models: parallelism, context-sensitivity, robustness, and evi-
dential combination. A learning story needs to be added, but
there is progress here also.

The most important thing about the target article is not the
extent to which it is right or wrong, but the fact that we can now
evaluate detailed models of complex phenomena that can lay
claim to behavioral, biological, and computational adequacy.
Not long ago this would have been impossible. Itis obviously not
casy to attack a hard problem (here, reflexive reasoning) from
the various perspectives simultancously, but we now have the
tools for expressing such integrated models and this is beginning
to have a profound cffect on the unified behavioral and brain
sciences.

Deconstruction of neural data yields
biologically implausible periodic oscillations

Waiter J. Freeman

Department of Molecular & Cell Biology, University of California at
Berkeley, Berkeley, CA 94720

Electronic mail: wfreeman( garnet.berkeley.edu

Shastri & Ajjanagadde (S&A) provide a fine example of circular
reasoning in their description of the “biological plausibility” of
their model, in that the results to which they appeal constitute
an Al-based interpretation of neurophysiological recordings
rather than raw measurements of activity in the visual cortex of
animals.

The “featurc detector” interpretation deriving from the ex-
perimental work of Mountcastle (1957). Lettvin et al. (1959
Hubel and Wiesel (1962), and many others holds that when a
complex sensory stimulus arrives in the sensory cortex, a small
subset of neurons is vigorously excited and inhibited. Von der
Malsburg and Schneider (1986) were the first to investigate
systematically some of the am! uities that arise when diverse
stimuli can generate the san. static neural response; thev
proposed a mechanism of phase-locked periodic oscillations to
resolve them. The findings of Engel et al. (1990) and Eckhorn et
al. (1988) appear to bear out his proposed solution, so that S&A
feel justified in pointing to the similarity hetween putative visual
cortical function and their model based on periodic orbits and
phase-locked pulses at some common frequeney in their net,

It is in the aspect of periodicity that their model falls short of
the biological data: the fanlt, however, lies not with S&A hut
with the interpretation by the biologists. W cortical neurons
were routinely observed to fire periodically at a designated
network frequeney then the von der Malshurg interpretation
would be amply jostified. Periodically firing nenrons are indeed
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found on occasion, particularly in the cat, which for unknown
reasons, has a peculiar tendency to narrow band oscillations in
all of its sensory cortices; but these neurons form a small tail in a
distribution of firing rates and patterns and the great majority of
neurons yield pulse interval histograms that conform more to
the Poisson than to the periodic distribution. Also the time-
lagged covariances between the pulse trains of pairs of neurons
tend to be vanishingly small (Abeles 1991), which would not be
so if the neurons usually shared a firing frequency, whether or
not they were in phase.

A further problem is that the mean firing rates of most cortical
neurons are considerably less than the prevailing peak frequen-
cies of cortical dendritic potentials (local field potentials or
electroencephalograms [EEGs]) in the gamma band (including
the 40 Hz). This fact is obscured by such techniques as multiple
unit extracellular recording, which is a form of spatial ensemble
averaging over a local cortical domain; correlation analysis of
spike trains, which is a form of time ensemble averaging that
enhances the appearance of narrow band oscillation by expres-
sing the time-variance of a frequency as the decaying envelope
of the correlation oscillation at the center frequency; and spike-
triggered averaging of EEGs, which invokes the spatial ensem-
ble averaging that is inherent in dendritic extracellular field
potentials (Freeman 1975; 1991) and the time ensemble aver-
aging that enhances the center frequency of a distribution of
frequencies. Again, the cat (from which the bulk of new results
in this development have been taken) vields particularly simple
wave forms, but unaveraged records from the lagomorph and
simian visual cortices reveal broad spectrum EEG activity
relating to goal-directed behavior on single trials (Freeman &
van Dijk 1987), which is oscillatory, to be sure, but strongly
aperiodic.

In brief, pulse trains and EEG waves are mostly aperiodic. It
is the requirement of Al-based modeling that leads to manipula-
tion of the data for the extraction of center frequencies and to the
suggestion that there is rapid convergence of visual cortical
dynamics to limit cycle attractors. Now definitions of “phase
locking” and “phase coherence” (as distinct from spatial coher-
ence of broad spectrum activity) can only be based on the
existence of discrete frequencies. The characteristically sloppy
wave forms seen in raw data indicate that the cortex is rather
indifferent to precise control of the frequencies of its pulse trains
and dendritic current amplitudes, and that it allows them to vary
continually seemingly at random. But the phase of a continuous
frequency distribution cannot be defined for these events.

Even with the techniques of data refinement noted above,
which suggest that narrow band oscillations are capable of
coming into synchrony in time periods as short as one cycle (20
to 40 msec), there is a reported spread of coupling of + 27°to
54° at 25 to 50 Hz and a 95% confidence range of 108° to 216°. If
these confidence intervals hold in the presented model, the
short time segments of 0.1 sec for the perceptual frames that are
invoked by S&A will not vield adequate reliability for readout by
detectors of phase lockings from a transmitting array. S&A note
some of the further unresolved difficulties regarding the man-
agement of multiple-phase modes and the compounding of the
difficultics when “soft” rules are brought into play, by which
continuous gradations of the degrees of synchronization are
used. Hence S&A's model is biologically implausible.

The hypothesis underlving S&A's formulation of the “hinding
problem” is that the visual cortex operates by extracting strong
correlations among a small subset of very active neurons in any
given time segment. An alternative hypothesis is that the cortex
operates by extracting weak covariances among very large popu-
lations of neurons whatever the magnitudes of their individual
activity. On this premise a nonlincar dynamics can be con-
structed (Freeman 1991) that envisions the existence of multiple
chaotic states and “itinerant” trajectories among them (Tsuda
1991). Here spadial coherence is eracial, and although it can
oceasiomdhy he detected as phase Jocking through massaging of

the data, the instantaneous frequency can and does vary pseu-
dorandomly over the short term. Simulations suggest that chao- .
tic dynamics may be unusually powerful at solving pattern
recognition tasks (Yao et al. 1991).

Biological memory systems are well known for their vagaries
(Bartlett 1934), and a case has been made that the essential
neural dynamics underlying the construction (not reconstruc-
tion) of images during acts of remembering is chaotic (Freeman
1991; Skarda & Freeman 1987). S&A note properly that they are
not intending to elaborate a model for brain function so their
appeal to “biological plausibility” seems inappropriate. Their
model for a commonsense knowledge base may be fruitful in
managing retrieval of information from large libraries, but only if
the “knowledge” has already been once removed from the real
world, just as the purported “limit cycle” behaviors of nerve cells
have already been deconstr ucted from the actual performance of
neurons in living brains.

Must we solve the binding problem
in neural hardware?

James W. Garson

Department of Philosophy, University of Houston, Houston TX 77204-3785
Electronic mail: phil0G jetson.uh.edu

Shastri & Ajjanagadde’s (S&A's) idea of representing variable
binding with signal synchrony and implementing deduction by
entrainment of signals is attractive. However, S&A postulate a
very specialized and rigid neural architecture to accomplish
these tasks. S&A’s model verifies that a net can implement fast
(but limited) reasoning by exploiting signal synchrony. That does
not tell us much about the brain, however. It would be a miracle
if the brain contained networks involving collectors, enablers,
rho-btu nodes, tau-nodes, concept clusters, and switches ex-
actly as S&A describe. Our understanding of the task to be
modeled and the machinery available comes nowhere near to
constraining the solution this tightly.

S&A’s project belongs to a paradigm in connectionist research
that attempts literal implementation of machinery (such as
binding) drawn from classical Al. There is an alternative connec-
tionist paradigm that takes the project of understanding binding
much less literally (Elman 1991; Servan-Schreiber et al. 1989).
It postulates a very simple recurrent net architecture and
successfully trains nets (with modified backpropagation) on tasks
that are traditionally thought to involve variable binding. In this
empirically minded paradigm, no attempt is made to define
ahead of time the subtasks or their manner of implementation.
That is to be discovered by the net, not stipulated. Here
solutions to the “binding problem” emerge from weight selec-
tion in a general purpose architecture that uses distributed
rather than local representations. This line of research has not
tackled reasoning directly, but it shows at least that some
implicit binding can be handled without special architecture.

The strong point of S&A's proposal is to display the advantages
of exploiting time in connectionist representation. However,
the same strategy is also exploited by nets trained in the
empirical paradigm. Here syntactic structure is represented by
the system's trajectory through phase space (van Gelder 1991).
Task classicists characterize as involving binding are accom-
plished by setting weights so that these trajectories are con-
strained in the right wayv. Empirically constructed svstems do
not represent arguments and fillers literally: with nodes or
groups of nodes. Bepresentation is distributed, and it is only In
principle component analvsis of pattern sequences on hidden
units that the outlines of the classical argument-filier ideas can
be brought into focus. This makes it hard to nnderstand process-
ing with distributed representations in classical terms. How-
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ever, distributed representations are more difficult for a net to
acquire and manipulate (Chalmers 1990).

Empirical model building is no better than classical at proving
how the brain actually functions. However, it does sensitize us to
the idca that understanding reasoning in the brain may require
transforming classical constructs rather than models for their
literal implementation. Given the possibility that distributed
coding avoids the need for specialized architecture, speculation
on details of an architecture specifically designed to support
reasoning on local (or semilocal) representations is premature.

I have a number of more detailed worries about S&A's
proposal:

1. I wonder how the theory deals with negation. How do we
handle negative conclusions, and (say) rules of the form: No A is
B? 1t is true that ncgation can be implicitly expressed in
production rules by replacing a negative consequent by the
corresponding positive antecedent. But applying this strategy to
“No A is B” leaves the consequent empty, and there is no
provision for empty consequents in S&A's scheme. As a useful
benchmark for how serious problems involving negation might
be, I invite S&A to explain how “No one is taller than himself”
could be a reflexively rcached conclusion.

2. 1 still wonder how rules can be learned. The strategy
(described in sect. 10.6) of tuning weights to establish the right
connections between predicates only works if generic links
between all the right predicates are already available. Providing
links for all possible connections between all possible predicates
sets off a combinatorial explosion. (To make matters worse, there
have to be separate links for forward and backward reasoning
since neurons do not conduct in two directions.) So S&A’s model
predicts that many rules simply cannot be learned because the
predicates happen not to be “neighbors.” Distributed represen-
tation avoids this problem because “links” between arbitrary
concepts are forged as processes rather than in physical space.

3. This problem is compounded when we turn to proposi-
tional attitudes, prepositions, and other modifiers. Consider all
the sentences we can construct by adding and deleting elements
to “Al saw Carol deceptively sell Dogl to Ed in the presence of
Frank under the influence of alcohol in a park.” To represent
these sentences, modifiers and propositional attitudes must be
dealt with as argumen‘s of the main verb (“sold” in this case).
(We certainly cannot represent every possible combination as a
separate predicate.) But then each predicate must have argu-
ments for all conceivable (and eventually learnable) modifiers
and propositional attitudes. The space investment in each predi-
cate is massive. Furthermore, I see no practical way to account
for reflexive reasoning from “Al sees that p” to “Al knows that p.”
(Reflexive reasoning for iterated attitudes or sentences where
modifier scope matters would also be impossible.) The argu-
ment structure of English is too complex and open-ended to be
written into our neurons.

S&A may complain that I take their model too literally. They
say in section 1.4 that their model is not intended as a blueprint
of how the brain performs. However, if their model is not at least
a provisional neural wiring diagram, then it is not clear how the
arguments involving neural time and space constraints they cite
are relevant in supporting their model over its competitors. 1f
links indicate functional structure, we must wait until we know
how links are implemented before we apply considerations
concerning (say) speed of neural conduction.
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Self-organizing neural modeis of
categorization, inference and synchrony -
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Shastri & Ajjanagadde (S&A) note how carefully controlled
synchrony may subserve a rapidly evolving inference, but they
do not show how the knowledge being synchronized can be
learned, and how this learning process leads to the desired
syn« hrony relationships. A recently discovered family of super-
vised learning, categorization, and prediction architectures pro-
vides insight into aspects of this fundamental problem. These
neural architectures are generically called ARTMAP (Carpenter
& Grossberg 1991; 1992; Carpenter et al. 1991; 1992).

ARTMAPs can learn arbitrary analog or binary mappings be-
tween learned categories of one feaiure space (e.g., visual
features) to learned categories of another feature space (e.g.,
auditory features). They perform well in benchmark studies
against alternative machine learning, genetic algorithm, or
neural network models. This may be because the Adaptive
Resonance Theory modules that go into ARTMAPs were derived
from a study of brain data (Grossberg 1987; 1988). In particular,
ARTMAPs can autonomously learn, categorize, and make predic-
tions about:

1. Rare events: A successful autonomous agent must be able
to learn about rare events that have important consequences
even if those rare events are similar to a surrounding cloud of
frequent events that have different consequences. Fast learning
is needed to pick up a rare event on the fly.

2. Large nonstationary data bases: Rare events typically oc-
cur in a noustativnary environment whose event statistics may
change rapidly and unexpectedly through time. ARTMAP con-
tains a self-stabilizing memory that permits accumulating
knowledge to be stored reliably in response to arbitrarily many
events in a nonstationary environment under incremental learn-
ing conditions until the algorithm’s full memory capacity, which
can be chosen arbitrarily large, is exhausted.

3. Morphologically variable types of events: In many envi-
ronments, some information, including rulelike inferences, is
coarsely defined, whereas other information is precisely charac-
terized. ARTMAP is able to adjust its scale of generalization
automatically to match the morphological variability of the data.
It embodics a Minimax Learning Rule that jointly minimizes
predictive error and maximizes generalization using only infor-
mation that is locally available under incremental learning
conditions in a nonstationary environment.

4. Many-to-one and one-to-many relationships: Many-to-one
lecarning takes two forms: categorization and naming. For exam-
ple, during the categorization of printed letter fonts, many
similar exemplars of the same printed letter may establish a
single recognition category. All categories that represent the
same letter may be associatively mapped into the fetter name or
prediction. This is a second many-to-one map arising for cul-
tural, not visual, reasons.

One-to-many leaming is used to build up expert knowledge
about an object or event. A single visual image of a particular
animal may, for example, lead to learning that predicts animal,
dog, beagle, and my dog “Rover.” In many learning algorithms
the attempt to learn more than one prediction about an event
leads to unselective forgetting of previously learned predictions
for the same reason that these algorithins become unstable in
response to nonstationary data.

ARTMAP systems exhibit properties 1-4 because they imple-
ment a set of hearisties qualitatively different from those of
error-based learning systems:

5. Pay attention: An ARTMAP can learn top-down expecta-
tions (also called prototypes, primes, or queries) that can bias

_
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the system to ignore masses of irvelevant data. These queries
“test the hypothesis™ that is embodied by the category as they
suppress features not in the prototypical attentional focus.

6. Hypothesis testing and match-based learning: The system
actively searches for recognition categories, or hypotheses,
whose top-down expectations provide an acceptable match to
bottom-up data. The top-down expectation focuses attention
upon, and binds, that cluster of input features that it deems tobe
relevant.

7. Choose globally best answer: After learning sclf-stabilizes,
every input dircctly sclects the globally best matching category
without any search.

8. Calibrate confidence: A confidence measure, called vig-
ilance, calibrates how well an exemplar matches the prototype
that it selects. If vigilance is low, even poorly matching exem-
plars can then be incorporated into one category, hence com-
pression and generalization are high. If vigilance is high, few
exemplars activate the same category, hence compression and
generalization are low. In the limit of very high vigilance,
prototype lcarning reduces to exemplar learning. The Minimax
Learning Rule adjusts the vigilance parameter just enough to
initiate hypothesis testing to discover a better category, or
hypothesis, with which to match the data. In this way, a mini-
mum amount of generalization is sacrificed to correct the error.

9. Rule extraction: At any stage of learning, a user can
translate the state of an ARTMAP into an algorithmic set of if-then
rules. ARTMAPs are thus a new type of self-organizing produc-
tion system. The Minimax Learning Rule determines how
abstract these rules will become.

10. Properties scale: All the desirable properties of ARTMAPs
scale to arbitrarily large problems.

11. Working memory: The input level of an ARTMAP may be a
working memory <. .igned so that any grouping of its stored
events can be stably learned in real time. Using sTORE working
memory models (Bradski et al. 1992a; 1992b), temporally evolv-
ing rules may be learned.

12. Temporal synchrony: The first ART articles (Grossberg
1976, 1978) predicted that visual cortical codes could be ex-
pressed by synchronous oscillations in which cooperatively
linked cells oscillate in phase and that oscillations could be
replaced by equilibrium points if no “slow” variables, such as
inhibitory interneurons or chemical modulators, exist. Within
ART, a synchronized oscillation can occur when bottom-up
feature-selective and top-down expectation signals fuse into an
attentive resonance that can support new learning and a con-
scious perceptual experience. The predicted linkage between
standing waves, attention, learning, and conscious experience
has recently attracted much interest (e.g., Crick & Koch 1990b).

After ART was introduced to analyze data about attentive
learning and recognition, Grossberg and Mingolla (1985a;
1985b) modeled processes of preattentive vision. A new type of
bipole cell was predicted to link perceptual features coopera-
tively into emergent boundary segmentations within a2 Bound-
ary Contour System (BCS). Grossberg and Somers (1991; 1992)
have demonstrated that both the BCS and ART circuits can link
cells cooperatively into rapidly synchronizing oscillations over
large cellular distances. The oscillation is not necessary for
binding per se, because features can be bound in a way that
explains large data bases using BCS and ART models in which no
oscillations occur. The oscillations provide an extra degree of
freedom that scales the amount of asynchrony that can be
tolerated before the wrong object parts may be bound together.
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Shastri & Ajjanagadde (S&A) have provided an impressive
demonstration of the power of synchronous activation to handle
the dynamic-binding problem in reflexive reasoning; however,
predicate-argument bindings can also be handled using the
tensor progduct approach advocated by Smolensky (1990). Hal-
ford et al. (1993) have proposed an analogical reasoning model in
which an N-place predicate is represented by a tensor product of
rank N + 1, with one vector representing the predicate and N
vectors representing arguments. We therefore have a situation
in which two very different approaches have similar achieve-
ments. Synchronous activation can handle reflexive reasoning
and analogical reasoning (Hummel et al., in press); tensor
product representations handle production systems (Dolan &
Smolensky 1989) and memory retrieval (Humphreys et al.
1989), as well as analogical reasoning.

These approaches may be competitive, or they may be com-
plementary, so that synchronous activation models deal with
reflexive or implicit reasoning and tensor product models might
be more appropriate for reflective or explicit reasoning. Tensor
product representations can represent certain properties of
relations that do not appear to be possible for the synchronous
activation approach. A relation R{a.b, . . . ,n) can be handled
by a tensor product of rank N + 1 (Halford et al. 1993). This not
only represents the predicate-argument bindings but also the
interactions within the structure. For example, the tensor prod-
uct representation of R(a,b,c) represents the influence of ¢ on
R(a,b), the influence of b on R(a,c), and the influence of a on
R(b,c). The synchronous activation approach can handle slot-
filler bindings but it does not appear able to represent these
higher-order relations that are important to complex concepts.

It is possible to collapse over any vector in the tensor product
(Humphreys et al. 1989), so any subset of the possible relations
can be represented. For example, given that R(a,b,c) is repre-
sented by a rank-4 tensor product, R(a,b), R(b,c), R(a,c), and
R(a,b,c) can be processed. Furthermore, any argument can be
retrieved given the predicate and remaining arguments, and the
predicate can be retrieved, given the arguments. Thus, the
tensor product representation has the flexibility and power that
are characteristic of explicit or reflective reasoning.

There are interesting correspondences in the way capacity
limitations are handled by the two models. In synchronous
activation models the number of distinct phases is limited to
between 5 and 10, whereas Halford et al. (1993) propose, after a
review of the working memory literature, that tensor product
models are limited to rank 5. They argue that the flexibility and
power of tensor product models in handling complex reasoning
requires each argument to be represented by a separate vector,
which has the status of a dimension in that it provides an
independent source of variation. This corresponds to a distinct
entity in S&A’s terms. The information represented by each
dimension, or each distinct entity, is variable, often over a wide
range, but the number of dimensions, or entities, is limited by
the rank of the tensor product, or number of phases. Thus the
models agree that the limit is not in the amount of information
expressed by cach entity or dimension but in the number of
independent dimensions (entities) represented in parallel.

It therefore appears that synchronous activation and tensor
product models have converged on a theoretical basis for the
concept of a chunk (Miller 1956), which is an independent item
of information of arbitrary size and is the unit that best defines
human-processing limitations. Both explain the finding that the
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amount of information that can be represented in any one item
(the chunk size) is variable over a wide range but the number of
independent items (number of chunks) that can be represented
in parallel is very restricted.
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Two sides of the same coin
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Shastri & Ajjanagadde (S&A) provide a number of important
contributions to our understanding of the psychology of reason-
ing and inference and its modeling with connectionism. Their
distinction between reflexive and reflective reasoning is well
made and in accordance with a growing consensus that many
types of human inference, particularly those directly involved in
language comprehension, are simply too fast for the sort of
deliberative processing associated with, say, solving syllogisms.
The network models discussed have the advantages of being
computationally simple and neurologically plausible and make
good contact with other arcas of research such as working
memory. On the whole the paper makes a serious and distin-
guished contribution to the area and will, most likely, be widely
cited.

Some clarification of the manner in which rules are acquired
would be in order, however, and would allow the theory to
develop further. S&A are obviously alert to this and touch on a
crucial point when they state that they are considering learning
“in the context of preexisting predicates and concepts where it is
desired that the cooccurrence of events should lead to the
formation of appropriate connections between predicate argu-
ments” (sect. 10.6). Recent developments in the learning theory
on stimulus equivalence and relational frame effects bear on this
issue and indicate the importance of quite extensive exposure to
such cooccurrent events. Briefly, these developments suggest
that large amounts of bidirectional training across a number of
domains are required by children before even the simplest
stimulus equivalence relation can be acquired. For example,
even simple symmetric relations between entities are typically
not exhibited by children of less than two years old. It seems
rather that a large number of forward (A goes with B) and
backward (B goes with A) mappings must be experienced across
a series of domains before domain invariant information (rules)
can emerge. Once these are acquired, merely learning that C
goes with D is sufficient for the reverse relation, D goes with C,
to be inferred (see Hayes [1991] for a detailed account of
relational frame theory). The key point is that rules themselves
are never acquired directly or within one domain; instead, the
invariant information that instantiates them emerges through-
out a series of behavioural interactions across several domains.

Viewed thus, rule acquisition is the reverse of the variable-
binding problem. Variable binding entails the attachment of
content with a rule (or an abstract structure) for use in a
particular situation; rule acquisition and instantiation involves
the functional detachment of common structure from a set of
variable contents for use in future situations with new content.
In S&A’s terms this mcans that examples of both forward and
backward pairings between predicate arguments must be ex-
plicitly experienced, in a variety of situations. before the sorts of
inferences they discuss are possible. In our own work we have
modeled some of these effects and shown how performance on
inference tasks. including reasoning about kinship relations,
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improves as a function of exposure to related domains (Barnes &
Hampson 1992). A solution to the acquisition problem in the
context of this model would probably help solve the problem of
memorizing facts or of converting dynamic bindings to the static
patterns S&A also identify.

It would also be interesting to see how easily the model
extends to analogical thinking. Both analogical thinking and the
more typical inferences considered by S&A can be construed as
similar processes in that both involve a match between domain
invariant information. It should not be impossible to extract
higher-order relations between predicate arguments across
many pattern sets and to use these to support analogical reason-
ing in a system such as S&A's.

Finally, an area that the field as a whole could now usefully
consider is the movement from reflective to reflexive reasoning,
which might be expected to follow practice in certain situations.
This mode-shift in reasoning seems likely given the assumption
that reflective reasoning involves conscious deliberation and
reflexive reasoning is more automatic, and the evidence that
practice generally shifts processing in the direction of automat-
icity. Previous accounts of strategy shifts in reasoning and prob-
lem solving have focused on changes in the representation used,
such as from visual image to verbal (e.g., Kosslyn et al. 1977); it
might be more fruitful now to consider whether (in addition or as
an alternative to these representational shifts) there is a shift
from reflective to reflexive reasoning modes — though as S&A
astutely point out, there may well be some situations that simply
do not permit reflexive reasoning (sect. 8.2.5).

Not all reflexive reasoning is deductive

Graeme Hirsta and Dekai Wut
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Shastri & Ajjanagadde’s (S&A’s) model is a well fleshed-out
proposal linking conceptual inference with neural representa-
tion. Assigning one phase to each concept occurrence is a clever
idea that is worthy of further development. In this commentary,
we discuss some of the problems that remain.

In their note 3, S&A see their notion of reflexive reasoning as
a generalization of the well-established notion of automatic
processing. In fact, the converse would seem to be true; S&A
talk about rapid deductive inference as if it were the only kind
of reflexive, or automatic (unconscious? — cf. Velmans 1991),
reasoning people perform. In reality, it is just one of many kinds,
some of which are quite general and others of which are very
specific.

1. Determining a probable relationship between two or
more concepts. This is the kind of reasoning we do when we
interpret novel (unlexicalized) nominal compounds such as
temporal pattern matcher. (Downing [1977] has shown that the
class of relationships between elements in nominal compounds
is large and unconstrained; but see Levi 1978.)

2. Computing the semantic distance between two concepts,
which is a fundamental part of such automatic reasoning as
lexical disambiguation (Charniak 1983; Hirst 1987: 1988; Hirst
& Charniak 1982) and certain kinds of problem solving (Hendler
1987). This kind of reasoning was achieved in the work cited by
means of marker passing; but, notwithstanding S&A’s remarks
about the similarity of their approach to marker passing, the
computation of semantic distance does not scem amenable to
any kind of phase encoding, for it relies crucially upon a static
property of the knowledge base ~ that the physical distance
between representations of concepts corresponds reasonabh
well to the semantic distance.
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3. Elaborative inferences such as supplying typical values for
roles whose fillers are left implicit or unspecified. For example,
subjects reading Mary stirred the coffee showed subsequent
facilitation for spoon in a word-completion task (Whitney &
Williams-Whitney 1990). (We speculate that this is not mere
word association; for example, Mary stirred the paint would
facilitate stick but not spoon. This hypothesis is presently being
tested in work in progress by the first author in collaboration
with Michael K. Tanenhaus and Gail Mauner.) Similarly, Cahill
and Mitchell (1987) found that reading a passage that described a
goal and a precondition for achieving it led to the inference of a
plan. The exact conditions under which elaborative inferences
are made has been the subject of some debate in the literature
(Dosher & Corbett 1982; Lucas et al. 1990; Whitney &
Williams-Whitney 1990); here we need only note that they do
occur under at least some conditions.

4. The interpretation of direct and indirect speech acts and of
discourse repairs and the recognition, in general, of intent, as
distinct from literal meaning, in discourse. Such tasks, when
described in full logical detail, are extraordinarily complex (cf.
Allen & Perrault 1980; Cohen et al. 1990; McRoy 1993; McRoy &
Hirst 1993). Although such interpretation is surely based on
compiled rules rather than carried out from first principles each
time (cof. Gibbs 1983), it remains automatic and not deductive.
More generally, much expert reasoning is reflexive interpreta-
tion, involving the recognition and categorization of patterns in
the domain of expertise (see, e.g., Cooke 1992, and the refer-
ences cited therein). (Note that this is not categorization in the
sense that S&A use that word in their sect. 2.4.)

5. Abductive inference, which can also be extremely rapid.
On this, S&A allude to another paper of theirs (Ajjanagadde
1991), but offer no details.

Moreover, S&A are not clear enough about neural plausibility
— specifically, whether individual neurons or ensembles in their
representation can possibly have biological correlates. On the
one hand, the imposition of detailed constraints on connectivity
and firing rate implies a biological interpretation. On the other
hand, their model is essentially localist; the representation
seems biologically implausible even when symbolic neurons are
replaced by localist ensembles late in the development (sect.
7.3). A symbolic representation is perfectly acceptable at an
abstract level of explanation, but experimentation with timing
parameters makes sense only if the representation itself is
neurobiologically consistent.

We believe that in certain ways the model is closer to marker
passing than the authors suggest. They refer to Fahlman’s (1979)
original proposal (sect. 3) and to generate-and-filter systems that
“evaluate the relevance of . . . paths [after collisions]” (note 14)
(e.g., Charniak 1983; Hendler 1987; Hirst 1987; Norvig 1989).
However, other marker-passing models have been proposed
where collisions generate inferences in first-come, first-served
fashion (e.g., Martin & Riesbeck 1986; Wu 1989). Markers carry
variable-binding information rather than what S&A call “back-
pointers to the original and immediate source of the marker”
(ibid.), and markers arriving at the same node are considered to
“collide” only if their bindings match. If we further impose a
phase for each variable, a very similar model results.

The model as proposed does not accommodate uncertainty.
Indeed, the “more complex messages” (ibid.) that are carried by
markers are also partly to handle probabilities (Wu 1989). S&A
suggest integrating temporal synchrony with an earlier eviden-
tial system (sect. 9.2). but defining a probability distribution
over inferences is not straightforward when variable bindings
are permitted. This is because the binding hypotheses them-
selves interact, both logically (say, by mutual exclusivity) and
statistically. So it is not even clear what the functional specifica-
tion ought to be.

An approach that might therefore help is the maximum-
entropy distribution as generalized for hypotheses involving
arbitrary variable bindings (formulated by Wu 1992a; 1992b).

Because variable bindings make full probability computation too
expensive, Wu also gives a robust approximate method, AME
(approximate maximum entropy), that allows arbitrary subparti-
tions of probabilistic constraints and hypotheses to be pre-
selected. How tractable approximations such as this could be
incorporated in a fixed connectionist architecture is an impor-
tant issue for future research.

S&A compare their temporal-synchrony method for binding
with the reduced-description approach (sect. 9.4). However, the
comparison is based on the encoding of rules as directed depen-
dency graphs. Combining reduced descriptions with rule
graphs is inappropriate because the object of reduced descrip-
tions is to avoid representing rules locally (e.g., Pollack 1988;
1990; Stolcke & Wu 1992). Also, contrary to S&A's statement
that reduced-description approaches “will also have to be aug-
mented in order to deal with noise,” inherent resistance to noise
is one of the nice properties that results from distributed
representation.
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Shastri & Ajjanagadde (S&A) claim that their “computational
model takes a step toward . . . resolving the artificial intel-
ligence paradox,” namely, the gap between the ability of humans
to draw a variety of inferences effortlessly, spontaneously, and
with remarkable efficiency on the one hand and the results about
the complexity of reasoning reported by researchers in artificial
intelligence on the other hand. This claim seems to be too
strong. S&A’s logic has certain special features. These features
are quite remarkable and are the result of an attempt to find a
class of formulae which is as expressive as possible and whose
satisfiability can be decided by the propagation of rhythmic
activity in parallel time bound by the length of the shortest proof
and with space bound by the size of the formula. Nevertheless,
from a logic point of view the expressive power of S&A's system
is fairly limited. And the mere fact that artificial intelligence
researchers have not investigated this particular logic does not
imply that a significant step toward resolving the artificial
intelligence paradox has been made.

But have artificial intelligence researchers really not investi-
gated S&A's logic? Because of the imposed restrictions, S&A's
system need not unify expressions but the matching operation
suffices. Whereas unification is inherently sequential (Dwork et
al. 1984), matching is known to be parallelizable in an optimal
way {(Ramesh et al. 1989). There is also a striking similarity
between S&A’s reasoning mechanism and certain reduction
techniques applied in automated theorem provers such as the
evaluation of isolated connections (Bibel 1988). For example, if
each variable occurring in the conditions of a rule occurs also in
the conclusion of a rule then a query, all of whose arguments are
bound to constants, can be solved by evaluating isolated connec-
tions only in precisely the same way that S&A's system solves
this query. As shown by Hélldobler (1990) the evaluation of
isolated connections can be applied in parallel. Moreover, if a
formula is as restricted as mentioned above and can be solved by
applying this reduction technigue only, then the bounds on time
and space are comparable to the bounds in S&A's system. But
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whereas the reduction techniques in an automated theorem
prover are applied in the larger context of proving the satis-
fiability of an unrestricted first-order formula, S&A's system is
designed to show the satisfiability of a very special class of
formulae and, hence, is more elaborate for this special class. If
the similarity between reduction techniques applied in auto-
mated theorem provers and the computational model presented
in this article holds for most of the special features, then S&A's
work shows that automated theorem provers which apply these
reduction techniques in parallel are adequate in the sense that
they solve simpler problems faster than more difficult ones.
Unfortunately, the authors have not investigated this similarity.

The results of the target article would be a step toward
resolving the artificial intelligence paradox if commonsense
reasoning problems were expressible in S&A's logic. The paper
contains some predications on this topic and it remains to be
seen whether these predictions hold. If they do then the gap
between the ability of humans to draw a variety of inferences as if
it were areflex and the results about the complexity of reasoning
reported by rescarchers in artificial intelligence is not a paradox
at all. If problems that can be solved effortlessly by humans can
be expressed in S&A’s logic, then these problems are just
simpler than the problems investigated in the artificial intel-
ligence community.
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Shastri & Ajjanagadde (S&A) have made an important contribu-
tion to the development of a counectionist representational
theory that accounts well for the fundamental systematicity of
human reasoning. The mest basic contribution of their work is
its demonstration that a connectionist-style model can represent
and use propositions and, more generally, structured informa-
tion. Despite the current flurry of interest in synchrony for
binding within the neural network community, comparatively
few modelers have proposed serious accounts of how synchrony
can actually perform useful work. Typically, networks are shown
to establish synchrony and the functional significance and capac-
ity of that synchrony is left to the imagination. In contrast, S&A
provide an explicit account of the representation of structure via
synchrony in a connectionist-style architecture.

Further work on the use of synchrony in knowledge represen-
tation is needed, and a number of important issues deserve
careful scrutiny. We consider one of the most basic issues: the
inherent tradeoff between distributed representations and sys-
tematic bindings among units of knowledge. The primary advan-
tage of a distributed representation is its ability to capture
naturally the similarity structure of the represented domain
(similar entitics can share a greater number of units in the
representation than dissimilar entities). The disadvantage is that
binding systematicity decreases (i.c., the likelihood of a binding
error increases) with the extent of distribution. Consider the
extreme cases. In a purely localist representation, wo binding
errors are possible. If there are N units, cach representing a
different concept, then the network can simultancously repre-
sent its entire vocabulary of concepts without any ambiguity
about what is being represented. The other extreme is the
completely distributed case, in which each of the 2 binary
patterns possible over N units represents a distinet concept. In
this case. no two patterns may be superimposed without spuri-
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ously creating 2 new pattern; in the event of superposition,
binding errors are inevitable. Intermediate degrees of distribu-
tion present intennediate likelihoods of binding errors.

The value of synchrony is that it allows a network to use a
distributed representation without being subject to binding
errors, thereby alleviating the tradeoff between similarity and
systematicity. There is a catch, however, which we term the one-
level restriction: Synchrony can only represent element bind-
ings at one level of abstraction or hierarchy at a time. That is,
synchrony cannot simultaneously represent the binding of ele-
ments to each other and also the bindings of the units within the
patterns representing those elements. This restriction is evi-
dent in S&A's model. The representation of propositions is
distributed over multiple predicate and object units but the
predicates and objects themselves are stricthy localist. The ane-
level restriction implies that hierarchical structures will be
difficult to represent. It is unclear, for example, how S&A would
extend their system to represent propositions such as “Jane
knows that Ted gave Mary flowers,” in which an entire proposi-
tion (rather than a simple object) is bound to the role of “what is
known.”

The one-level restriction has other important implications for
$&A’s model. A basic strength of the inodel is its capacity to stack
an unlimited number of predicates on top of an object without
additional cost (i.e., any number of predicate units may fircona
given time slice). This capacity is critical both to the modcl’s
operation (it is directly responsible for its ability to “search” in
parallel down multiple inference paths) and for its behavioral
predictions (specifically, that many predicates modifying few
objects should require less capacity than few predicates modify-
ing many objects). But S&A's model can only stack predicates
because its representations of predicates are nonoverlapping
(localist). If S&A adopted a distributed representation for predi-
cates then stacking would entail sacrificing systematicity of
bindings. S&A's use of localist predicates is thus more than a
notational convenience; it is an integral part of the models
architecture with far-reaching implications.

The one-level restriction does not imply that it is impossible
to use a distributed representation at more than one level of
abstraction; rather, it implies that if the lower-level (e.g., predi-
cate) representation is distributed then multiple elements of this
kind cannot in general be combined within a single time slice.
That is, S&A could represent their predicates in a distributed
fashion but they would no longer be able to stack them. In our
own work (Hummel & Holyoak 1992; Hummel et al., in press)
we have explored the use of synchrony to represent proposi-
tions. Like S&A’s model, ours uses synchrony to bind objects to
case roles within propositions; but unlike S&A’s model, ours
uses a distributed representation of objects and predicates. The
benefits of our representation are all those typically associated
with distribution (e.g., similarity, automatic generalization,
etc.). The cost is that our model cannot stack predicates in the
same unbounded manner as S&A’s model. Rather, it represents
the binding of one object to only one case role per time slice.

We have come full circle, returning to the tradeoff that
originally motivated the use of synchrony. S&A's model and ours
represent opposite extremes of this tradeofl, only this time,
synchrony — already assumed - is not available to case our
dilemma. Some degree of distribution at the level of predicates
seems necessary; thus S&A are forced to search an 15-A hier-
archy to capture similarity relations. And our restriction of once
object-to-case-role binding per time slice may entail processing
that is too serial for the type of reflexive reasoning performed by
S&A’s model. An interesting question concerns what compro-
mises are possible between these extremes (e.g.. repeated
sampling of randomly stacked distributed representations). It
seems that the tradeoff between distribution and systenaticity is
a real one, and synchrony for dynamic binding - although it
cases the pain of the tradeoff - is not sufficient to make it
disappear completely.
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Synchronization and cognitive carpentry:
From systematic structuring to simple
reasoning
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I would like to relate this thought-provoking target article by
Shastri & Ajjanagadde (S&A) to the dynamic linking by synchro-
nization of rhythmic activity in neural networks. This has been
discussed and simulated for sensory segmentation (Shimizu
et al. 1985; von der Malsburg & Schneider 1986) and for
knowledge-dependent image decomposition and its resynchro-
nization for interpretation in vision, including the development
of alternative hypotheses in a quasi time-sharing processing
mode at separate phase positions of the rhythmic activity (Koer-
ner et al. 1987; 1990). Whereas those approaches dealt with
signal level description and the transition from signal to symbol
level, S&A’s approach bridges to a more elaborate structuring of
the represented knowledge, applying this rhythmic control as a
mechanism for easy reasoning in sophisticated knowledge struc-
tures, dynamically linking just that part of the stored knowledge
that is needed to solve the problem posed. This is the comple-
mentary aspect of the above-mentioned approaches (see sect.
2.5).

This contribution bears on the still controversial issue of
whether or not oscillatory phenomena in cortical recordings are
relevant to an understanding of cortical processing: Yes, oscilla-
tions make a lot of sense there. Having dealt with directly
related problems from a similar point of view, I agree with S&A
in many respects, but instead of simply summarizing all the
points I agree with, I will discuss extensions of the conceptual
design of the model that are needed to bridge the gap between
the signal and the symbol level approach and to give a more
detailed description of characteristic aspects of reasoning and
decision making in brainlike systems.

I strongly question the statement (sect. 3.4) that there is no
need for any central control or system clock. S&A offer no
reasonable idea of how such tricky structures can self-organize
from unstructured data to allow the emergence of complex
knowledge bases at all and to ensure the requisite flexibility,
giving the system the chance to modify and create symbols
based on persistent subsymbolic descriptions (Smolensky 1988).
In this respect learning is not a problem of adjusting weights
(sects. 3.4, 10.6) but of self-organizing the algorithmic structure.
How is one to resolve conflicts in a limited time in large-scale
systems of this fundamentally asynchronous type if there is no
helpful demon keeping track of all the locally emerging hypoth-
eses and setting the right phase position? If one has as definite a
setup for one’s problem as in the proposed model (with preset-
ting of a definite and highly unitary structure, preselected
objects, facts, rules, and presetting the proper phase position for
each symbolic item to be handled) then the system cannot get
stuck but will behave as desired. But how is one to create the
appropriate setup to make this approach work so smoothly? My
point is that this will turn out to be at least an equally decisive
problem in dealing with a “real world problem” like image
interpretation.

This is not a problem resulting from simplification that can be
resolved in a straightforward way (sects. 9, 10). We have gone the
route S&A recommend in section 10.1, and implemented the
internal and external scan path as knowledge controlled atten-
tion mechanisms to decorrelate the parallel (in-phase) visual
input and resynchronize it from asvachronously emerging local
hypotheses to an increasingly global consensus, with autono-
mously ranking alternative hypotheses at different phase posi-
tions within the period of global rhythmic control processes
(Gross et al. 1992: Koerner & Boheme 1991 Koerner ot al.

1987). Synchronization by associative cooperation and local
competition as described in section 7.3 will suffice to do the job .
only for small-scale problems.

At a more realistic scale of both system and problem complex-
ity there is no guarantee of smooth convergence to a consistent
global solution (or of any decision at all) in a limited time.
Reasoning in such asynchronous(!) systems does not get trig-
gered with well-defined structures in space and time but distrib-
uted activation seeds (activated local relational structures) start
locally synchronous oscillations (or better, reverberations) that
have the aggressive tendency to occupy more systems resources
to achieve the activation of the most possible representation.
However, with growing system complexity, this is a typical case
of combinatorial explosion among alternative decisions.

Exclusively local control is not a solution for this problem,
even if we take into account that several alternative decisions
can be developed concurrently with the proposed phase label-
ing. The frequency and phase position of a locally evolving
oscillation of a relational structure is defined by its size, struc-
ture, and the sensory (or internal) call that triggered it (if you
accept the at least partly analog-type evaluation of input activity
in neurons and therefore also in neuronal oscillating clusters).
Hence, there is not only the range of 40-60 Hz observed in early
visual processing (small relational structures), but, with the
increasing dimension of the dynamically linked cluster in this
aggressive competition for a growing range of dominance, a
large variety of irregular frequencies (and of phase positions
within these frequencies) emerge. With respect to neural pro-
cessing we expect this range to be between the highest fre-
quency of about 40-60 Hz (complete matching of inputs to all
the requisite eliciting conditions for this parallel represented
knowledge structure) and the lowest one (defining the largest
possible time interval in which a partly inatched representation
can self-amplify by synchronizing related representational
structures that were not coherently active initially) which we set
(for several reasons) to the 4-8 Hz of the hippocampal theta
rhythm (Koerner et al. 1990; 1991; submitted). The more simple
such a parallel representation is, the higher the probability it
will already be activated initially by the complete set of condi-
tions (inputs) and will oscillate with the maximum frequency.

Any such smooth relation between the relative global struc-
ture of a representation and its initial frequency of updating is
required for stability, so that more global representations with
lower updating frequencies will have a chance to take increased
control of lower-order representations reverberating at higher
frequencies (this is the condition for convergence of the decision
process). Hence reasoning with dynamic linking should not be a
one-step synchronization;, Several time scales are to be ex-
pected. The solution is not to replace the definite system clock
by a couple of definite frequencies but to allow the emergence of
this almost chaotic variety of candidate relational structures in
reflexive reasoning (characterized by its frequency and relative
phase position) and to guide it to a consisting global solution by
monitoring the emerging globalization tendency of coherent
activities and by setting a (theta-rhythmlike) adaptive system
clock to the most promising phase position. This thereby forces
the system to a globally consistent solution by focusing the
search on aspects related to this decision.

With reference to experimental evidence and to Minsky's
(1985) idea of A- and B-brain we proposed the hippocampus as
this unspecific controller (Koerner et al. 1990; submitted). For
such theta rhythm-driven reasoning the limitations on the depth
of reasoning do not apply (see sect. 8.2.6).

We too have been attracted by Miller's (1956; 7 = 2 rule; we
accordingly defined the number of alterative solutions the
madel system should be able to handle concurrently (thereby
defining short-term memory). However, we related this mea-
sure to the time scale of theta rhythm based on experimental
facts more closely connected to the cognitive quality of neural
processing than to the observed oscillation in carly vision (e g
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the time interval between feedback-controlled saccadic eye
movement, behavior-related phenomena in hippocampal theta
and EEG recordings, or the statistical distribution of pattern
sequence length in human communication, etc.).

Hence, although I agree that this 7 + 2 story may support
such a dynamic reflexive-reasoning scheme, 1 doubt one can
directly and superficially relate observations on an early visual
process to the results of a psychological experiment involving
much more complex processes and structures.

Reflections on reflexive reasoning

David L. Martin

Computer Science Department, University of California at Los Angeles, Los
Angeles, CA 90024

Electronic mail: martin@cs.ucla.edu

Shastri & Ajjanagadde (S&A) have taken some important and
impressive steps toward understanding aspects of human cogni-
tive capabilities. Although it is still much too soon to know how
much of their architecture is genuinely explanatory of human
cognition, they have proposed a connectionist system that
defines enough architectural and performance characteristics to
suggest a broad range of empirical tests and to invite a variety of
important extensions. Nevertheless, the system models only an
isolated portion of cognition ~ perhaps artificially isolated - and
we need to be clear about what kinds of evidence would serve as
meaningful corroboration of it.

Reflexive versus reflective reasoning. S&A’s presentation of
their system as a model of reflexive reasoning only is an approach
that is both laudable and troubling. It is laudable because it
avoids the common tendency in artificial intelligence work to
portray systems of limited capabilities, operating over restricted
domains, as if they already capture the essence of some of the
least understood, and most general, areas of cognition (McDer-
mott [1981] exposes this tendency well). For example, S&A have
wisely refrained from making any claims with regard to the
nature of conscious deliberation, which they consider to be
characteristic of reflective reasoning.

S&A's approach is also troubling, however, because it serves
all too well to isolate the model from criticismis of its limitations
and deflects many of the questions that are most in need of
answers. To any question of the form, “Why can’t this system
display characteristic X which is clearly present in human
reasoning?” it can be answered that X is characteristic of reflec-
tive rather than reflexive reasoning.

Thus, the most pressing need for empirical work related to
this model is in corroborating the reflexive/reflective distinc-
tion. Given that this distinction holds up, it will be necessary to
delineate the boundaries of reflexive reasoning in humans em-
pirically before we can accurately judge the adequacy of this
model.

Moreover, the isolation of reflexive reasoning in a model of
cognition raises as many hard questions as it deflects. Granted
that the distinction between reflexive and reflective reasoning is
intuitively appealing, is there sufficient reason to believe that
the two depend on mechanisms and representations that are
essentially different? If so, how do we account for the apparently
smooth integration of the two? How do we account for the
instant availability of the products of one for processing by the
other, or for the ability to give explicit verbal characterizations of
reflexive reasoning, just as we do for reflective? Do the sug-
gested extensions to the model (e.g.. function terms and encod-
ing soft and defeasible rules) make sense for reflexive reasoning,
reflective reasoning, or both? In learning new rules, what is the
relationship between the reflective and reflexive reasoning
processes and the representations they use?
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What's missing? As S&A have pointed out, there is much that
the model does not yet account for, even within the realm of
reflexive reasoning. In suggesting areas for further work, it is
perhaps most useful to focus on those in which a more complete
account would help the most to provide corroboration of the
model. Here are a couple of candidates.

Learning. In addition to providing significant new constraints
on the form of these representations and a new source of
empirical tests, successful learning techniques will be required
before the system’s ability to scale up to real-world proportions
and generality can be demonstrated.

Expiaining. As pointed out in section 5 of the target article,
facts are retrievable by query processes but not rules or relation-
ships between rules. Thus, it remains to be shown how an
explanation of a reasoning process could be given (as in S&A’s
introductory example of Little Red Riding Hood). (Such an
explanation would not necessarily fall within the realm of reflex-
ive reasoning processes, but still the representations of rules
would have to allow for such an explanation.)

Classical versus connectionist architectures. In their influen-
tial article, Fodor and Pylyshyn (1988a) questioned the viability
of connectionist architectures as models of cognition except
insofar as they are used to implement classical models, that is,
madels that embody compositional representations and struc-
tural sensitivity of processes. At the time, unfortunately, the
idea of a classical model was roughly identified with completely
general mathematical models of symbol manipulation such as
Turing machines, and the idea of a connectionist model was
roughly identified with relatively unstructured (layered or com-
petitive) masses of neuronlike units. This led to a sense of
paradox with regard to connectionist modeling: It was clear that
a biologically plausible model had to be connectionist, and yet it
was equally clear that a connectionist implementation of some-
thing like a Turing machinc could not be biologically plausible.

Models such as that proposed by S&A are beginning to
suggest the way out of this dilemma by showing that there exists
abiologically plausible middle ground based on more structured
connectionist architectures that manage to implement limited
versions of compositionality and structural sensitivity but fail to
approach the full generality of Turing machines. Some of the
most interesting psychological work will probably center around
the empirical verification of the ways in which humans fall short
of this full generality, and some of the most intercsting philo-
sophical issues will probably focus on refining our understand-
ing of how such general mathematical models can best contrib-
ute to our understanding of intelligence.

What we know and the LTKB

Stanley Munsat

Department of Philosophy, University of North Carolina, Chapel Hill, NC
27599-3125

Electronic mail: undone( unc.bitnet

We are forever in debt to the field of artificial intelligence for
what we have learned from its failures. Among the legacy of
insights from Al is the realization that the understanding of
language in all its forms (including stories, jokes, arguments,
and explanations of events and actions) requires that we be in a
position to bring to bear a virtually limitless array of knowledge
and expericnce — instantancously. Researchers in Al being in
the business of data manipulation, would quite naturally con-
ceive the problem of “representing our knowledge of the world”
and bringing it to bear on the wnderstanding of language as
threefold: (1) How do the data get into the svstem: (2) how are
they dassificd and stored; and (3) how are they gotten to and
processed when needed for a particular task (sav. reading and
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answering questions about a particular story). (The three prob-
lems are not dealt with independently; each needs to be ad-
dressed with the requirements of the other in mind.)

If you suppose that the data base consists of stored proposi-
tions (“facts” and “rules”), and that there are tens of millions of
them, processing takes awhile. There will be searches through a
large amount of data and long chains of processing and so the Al
model becomes unrealistic as a model of human language
understanding.

Shastri & Ajjanagadde (S&A) have presented us with a con-
nectionist solution to the problem of how large numbers of
propositions are stored (the long-term knowledge base, or
LTKB) and activated when the time comes (e.g., when a ques-
tion is posed to the system). The connectionist language under-
stander is much faster because it does not require searches and
sequential processing steps in the manner of Al models. But at
the same time, the S&A model perpetuates a fundamental
assumption of Al models of language understanding. They
assume that “what we know about the world” should be thought
of as a set of (encoded) propositions. Let me call this assumption
the LTKB-assumption (or LTKB-A).

I foresee two problems for LTKB-A as a mode for represent-
ing what we know about the world and for showing how we bring
this knowledge to bear in understanding language. One prob-
lem is that the LTKB will contain too much, and the other is that
it could not possibly contain enough. It should be noted at the
outset that the questions being raised here are not directed at
the S&A model per se; their model was never proposed as rich
enough to be applied to such problems as story understanding,.
Rather, the challenges are being offered to call into question the
plausibilit* of any model of story-understanding that is based on
LTKB-A.

The first problem can be illustrated with S&A’s Little Red
Riding Hood story. Of all the millions of items in the LTKB that
have to do with children, people in general and their behavioral
tendencies, people in relation to children, wolves, people in
relation to wolves, children in relation to wolves, people in
relation to children in relation to wolves, ways of getting hurt,
and on and on, how do just the right propositions get invoked
(meaning just those propo-sitions that are needed to make sense
of the sentence “The wolf heard some woodcutters nearby and so
he decided to wait”)? Cne might want to answer, “Well, those
are the propositions (actually, one of many possible sets of
propositions) that will make sense of the sentence in the story.”
And that is no doubt true. And we, if prodded, can come up with
such a set of “sense-making assumptions” out of all the things we
know about the world. But short of giving the connectionist
network a (homuncular) sense of what it takes to make sense of
the story, how does it select just the right pieces of background
knowledge needed to make sense of the story-sentence? But
even this is not the end of the problem. In addition to making
sense of story lines, we can recognize when a story line does not
make sense. Do we explain this as the reader of the story failing
to find facts in the LTKB that would make sense of the story? But
this will not do either. For story readers can tell you what would
have to be the case in order for the story to make sense. And they
certainly cannot find that in the LTKB. All of this suggests that
story understanding is in many respects more akin to story
writing than it is to fact recalling.

The second problem is that we are capable of bringing so
inuch of our knowledge and experience to bear in language
understanding that we cannot have all of that stored as a set of
propositions and rules.

Walter and Jane get up for a few dances at a wedding
reception. As they return to their table, their friend Jason says,
“You two were great. What beautiful dancing partners — you two
are just like Fred and . . . 7 At this point, Rosemary interrupts
and completes the sentence: “Ethel. " Not evervone will get the
joke. but it von do, a reconstruction of the clements of the joke is

that the dancing couple is being complimented on their danc-
ing. They are being compared to Fred and someone. so Fred .
and someone must be a famous dancing pair (famous because
their first names alone are enough to identify them). We thus
expect the next name to be Ginger. But Rosemary interrupts
with “Ethel,” thus evoking the pair Fred and Ethel Mertz of the
‘I Love Lucy” show. Having seen Fred and Ethel Mertz on
television, the thought of them as graceful dancers strikes us as
hilarious.

Is “Fred and Ethel Mertz would be ridiculous as dancers” in
our LTKBP? In retrospect, it can seem as if it must be. But how
did it get in there? Was it being formulated as we watched the “1
Love Lucy Show,” as it were, getting us ready to appreciate the
joke should it ever be made? If such a proposition is in the
LTKB, it is hard to imagine what is not. For example, how about
“Fred and Ethel Mertz were not a couple on the Jackie Gleason
show”? Is that in the LTKB? If it is, did it get in there as a resuit
of watching the Jackie Gleason show or the “[ Love Lucy” show?
Again, if such a proposition is in the LTKB, it is hard to imagine
what is not. The list of who was not on the Jackie Gleason show is
very long. But in conversation someone mistakenly places Fred
and Ethel on the Jackie Gleason show (a natural mistake; there
was a neighbor-couple on that show, too) and 1 immediately spot
the mistake.

The problem does not just come up in story understanding.
Suppose 1 happen to be in a convenience store, along with
several other people, when two men wearing ski masks hold up
the store. The next day | am asked questions by a police
detective, and I answer them as best I can. How are we to think
about where the answers are coming from? One way to think
about this is to think of my witnessing of the events of the
robbery as producing facts for the LTKB. But what facts?
Everything that was true of the robbery that I was in a position to
know? The detective asks, “How tall was the one with the green
ski mask?” I hesitate. e says, “Was he taller than the cashier?” |
immediately reply “yes.” Was that fact already encoded in the
LTKB?

One reason this seems unreasonable is that if the answer to
every possible question about our lives that we can answer is
stored as a fact or rule there would just be too many. Second,
how are we to suppose that these facts get prized off our
experience? What sort of mechanism could take our experience
in the convenience store and produce from it al the facts that
there are in that experience (all the answers to all the questions
that I could answer about that experience if asked)? The detec-
tive, having snent a career investigating such things, knows just
what to ask. Some of his questions may strike me as odd. (Did
the one that did the talking come in the door first or second?) Are
we to suppose that my inexperienced brain is going to know
enough to load my fact bank with the answers to these (and all
other possible) specialized questions?

What all of this suggests is that we should not think of what we
know about the world as a stored set of facts, even facts distrib-
utively coded, which can be accessed as needed. Rather, we
should think of experience as more holistically altering the
system so that we can produce such facts when the need arises.
But also, alterations in the system (from experience) would have
the result that we get on with the reading of a story when past
experience supports such facts as would have to be the case in
order for the story to make sense.

1t is, of course, not casy to think concretely about how to
model such a system. But then, we are talking about the human
mind. Nobody said it would be casy.

NOTE
L. The joke is borrowed from an episode of the television program
“Cheers.”
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Computational and biological constraints
in the psychology of reasoning
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Cognitive Neurocomputation Unit, University of Wales at Bangor, Gwynedd
LL57 20G, wWales, UK

Electronic mail: #pss027(« vaxa.bangor.ac.uk; bmike(: cogsci.ed.ac.uk

Shastri & Ajjanagadde’s (S&A's target article represents a po-
tential milestone in the cognitive science/psvchology of human
reasoning. Their proposal compels a departure from the more
traditional logicist Al perspective, in which the development
and implementation of more-or-less formal caleuli have been the
goals (Braine 1978; Johnson-Laird 1983; Johnson-Laird & Byrne
1991; Rips 1983; but see Qaksford & Chater 1992a). S&A note —~
from psychological considerations — that humans must continu-
ously compute rapid systematic inferences over very large
knowledge bases, but thev also note — from computational
considerations — that these inferences must be of a limited kind
and capacity. Human reasoning springs, in their model, not
from general-purpose deductive imachineries but from the natu-
ral dynamics of interacting neural representations. S&A’s ap-
proach makes an appropriate rejoinder to Fodor and Pylyshyn’s
(1988b) recent criticisms of connectionism (Chater & Qaksford
1990). They have shown that — within the nonlogicist Al tradi-
tions of connectionism, parallel marker-passing architectures
(Fahliman 1979; 1981; Hendler 1987), and computational neuro-
science (Churchland et al. 1989) ~ a productive synthesis of
psychological, computational, and neurobiological evidence can
be brought to bear on the central cognitive problem of
reasoning.

In this commentary, we briefly explore the potential of S&A's
model to illuminate issues in the psychology of reasoning.

First, by emphasising the need for computationally tractable
accounts of human inference, S&A identify an important source
of constraint on psychological models (Oaksford & Chater 1992a;
1992b). In cognitive psychology, theories of reasoning have
concentrated on empirical adequacy. Constrained laboratory
tasks involving at most two or three premises provide the data
that these theories attempt to explain (see, e.g., Evans 1982;
1989; Johnson-Laird & Byrne 1991). Ultimately, however, psy-
chological theories must generalise to real human reasoning that
may implicate the whole of a person’s world knowledge in an
inference (Fodor 1983). Current reasoning theories, however,
invoke processes that, when generalised to large knowledge-
bases, are computationally intractable (Oaksford & Chater
1992a; 1992b). Even if they fully “account™ for the empirical
data, they could not be psychologically real. S&A place the
emphasis in just the right place: Realistic theories of human
reasoning must not only be tractable, but tractable using biolog-
ical hardware. [See also Tsotses: “Analyzing Vision at the Com-
plexity Level” BBS 13(3) 1990.]

Second, S&A’s model appears to generalise naturally to every-
day, defeasible inference. The deductive inferences typically
investigated by reasoning researchers are computationally in-
tractable by symbolic means, but everyday defeasible inference
is worse: The application of a single rule is intractable (McDer-
mott 1986; Oaksford & Chater 1991). Recent claims that at least
one extant theory of deduction — mental models ( Johnson-Laird
& Byrne 1991; see also BBS multiple book review of Johnson-
Laird & Byrne's Deduction, BBS 16(2) 1993) - generalises to
account for everyday reasoning founders on a problem for which
S&A provide a natural solution (Chater & Oaksford 1993:
Oaksford 1993). The plausible but defeasible conclusion, from “I
turned the key of my car and it has not started.” 1s, “The ignition
is faulty.” But why is this default conclusion to be preferred to,
“The engine has been removed overnight™ The lack of an
answer in mental models theory suggests that the real problems
of defeasible reasoning are widely unappreciated (Chater &
Oaksford 1993, Garnham 1993 Oaksford 1993 S&A show how
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dynamic bindings and type restrictions can be generalised to
pravide binding strengths and type preferences that can differ-
entiate between possible defeasible conclusions.

Third, 3&A’s use of type restrictions may explain one common
bias in reasoning tasks (Evans 1989). [n “matching bias,” sub-
jeets tend to ignore negations, instead matching named items
(Evans 1972; 1983; 1989). When asked to construct a true
instance of the rule, " there is a blue triangle on the right, then
there is not a red square on the left,” they may place a blue
triangle on the right and a red square on the left (Evans 1972).
Qaksford and Stenning (1992) have shown that this bias is due to
a difficulty in constructing appropriate contrast-classes. The
materials vsed in these experiments leave the intended
contrast-class ambiguous, forcing subjects to match. When the
ambiguity is removed, matching bias disappears. Oaksford and
Stenning (1992) suggest that tvpe restrictions on a predicate’s
arguments constrain the contrast-classes identified by a nesated
constituent. For example, "He did not travel to Manchester by
train” (italics = rising intonation), identifics modes of transport
as the appropriate contrast-class because the ternary predicate
travels has the following associated type restrictions: travels
(traveller: x; destination: y; mode of transport: z). Tvping is of
course not unique to S&As proposal, but we feel that their
approach is more likely to generate constrained, tractable typ-
ing mechanisms (perhaps explicitly invoking the notion of
contrast-class).

Fourth, S&A divide human reasoning into two kinds: Reflex-
ive reasoning is rapid, unconscious, and underpins on-line
prediction and explanation of the world, anaphor resolution,
text elaboration, and so on. Reflective reasoning is conscious,
and involves external memory aids (pencil and paaer) and
external representational systems (diagrams, pictures, mathe-
matics, logic, ete.). Other connectionist researchers interested
in reasoning (Rumelhart 1989; Rumelhart et al. 1986) have
advocated this essentially Vygotskyan distinction that logical
reasoning is a function of the internalisation of external repre-
sentational systems. [See also Hanson & Burr: “What Connec-
tionist Models Learn™ BBS 13(3) 1990.] This division leaves
traditional reasoning theories such as mental logics and mental
madels without a natural problematic. Those theories seem mo-
tivated by requirements and notations from explicit deductive
reasoning and are then generalised to reflexive modes of infer-
ence (see, e.g., Ichnson-Laird 1983). In our view this is mis-
guided: Peoplr: are reflexive reasoners first; the mechanisms of
reflexive reasoning are coopted to perform deductive inference.
Unsurprisingly, people are not particularly good at the latter.

Two aspects of our recent work support this position. First,
tasks in which deductive performance is poor do not allow
subjects to use external aids like pencil and paper. If such
reasoning requires external aids, then the simple expedient of
providing them should improve performance. In some pilot
work we supplied subjects with penceil and paper in an abstract
version of Wason’s (1966) selection task and gave them one
minute to solve it. Solution rates were at around 60% compared
to only around 4% in the standard task. Scecond, Qaksford and
Chater (in press) have argued that performance on a variety of
conditional reasoning t2sks can be explained by the reflexive use
of a predict-and-eaplain strategy of the kind that S&A imple-
ment in their model.

Finally, S&A’s model of reasoning is at the right level to
contact neuropsychological investigations of frontal lobe fune-
tion. Neuropsvchological evidence constrains wmany other areas
of cognitive inquiry but not human reasoning. This is anomalous
because the impairment of hypothesis testing (Milner 1963} and
planning (Shallice 1982) performance (arcas also investigated by
reasoning researchers) in frontal lobe damage is well known.
{See also BBS multiple book review of Shallice’s From Neuro-
psychology to Mental Structure, BBS 143 1991.] We have
begun to use standard reasoning tasks with frontal paticents
(Oaksford et al. 1992b), patients with Parkinson's disease 1\l
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loch et al. 1992), and patients with closed head injuries
(Oaksford et al. 1992a), with some interesting results. It may be
passible to perform computational “lesion” experiments on
S&As model to see whether qualitatively similar behaviour
results. Two factors make S&A's model of particular significance
here. First, it is sufficiently well specified to be implemented
and to make explicit predictions. This contrasts with the
Norman-Shallice (1985) model. Second, S&A's reasoning archi-
tecture makes contact with “the rest of” cognition. Computa-
tional models of frontal lobe function such as Dehaene and
Changeux’s (1991), while using biologically motivated building
blocks, use architectures that are tied to specific tasks.

The range of implications of theory or model is one guide to its
potential for influence. We believe that S&A have provided a
technical approach rich in experimental possibilities. This is not
to say that it has solved everything; there are several issues S&A
have not tackled: They may make too much of functionally
questionable neurophysiological results; indeed the “neuro-
biological” plausibility of their scheme is conceptual rather than
factual. Their solution to the variable-binding problem works
only for essentially localist representational schemes (or localist
views of distributed schemes). Seen as an ingenious use of the
time domain to implement marker-passing, their proposal is of
course no more (or less!) powerful in itself. Although S&A
address the intractability of reasoning over very large data bases,
other computational problems well known in Al knowledge
representation remain to be resolved in detail (e.g., the frame
problem may reappear in the appropriate specification of typing
categories). Finally, it is not clear how the rest of a cognitive
architecture can “know” (or “learn”) how to interact effectively
with the particular nodes and oscillations of one of S&A’s
inference architectures. Despite such objections, S&A’s model
introduces important new constraints, and a useful expressive
vocabulary, to the psychology of reasoning.

This is definitely a step in the right direction on the road to a
computationally and biologically, as well as psychologically,
constrained theory of human reasoning.

Psychological implications of the
synchronicity hypothesis

Stellan Ohlsson

Learning Research and Development Center, University of Pittsburgh,
Pittsburgh, PA 15260

Electronic mail: stellan@ vms.cis.pitt.edu

Unlike researchers who try to prove that symbolic descriptions
of human cognition should be replaced by descriptions of neural
mechanism, Shastri & Ajjanagadde (S&A) are engaged in the
scientifically more fruitful enterprise of relating the two levels of
description to each other. The particular computation analyzed
in their article is forward inference, for example, to infer the
proposition own(Mary, Bookl) from the implication give(x, y, z)
— own(y, z) and the fact give(John, Mary, Bookl). At the
symbolic level, such inferences consist of two computations.
First, a match predicate is applicd to verify that the given fact
instantiates the antecedent of the implication; the output is
the set of variable bindings that make the match true:
Match|give(John, Mary, Bookl), give(x, y, z)] = (x/John,
y/Mary, z/Bookl). Second, the bindings are used to substitute
constants for variables in the consequent: Substitute/x/John,
y/Mary, z/Bookl| [own(y. z)] = own(Mary. Bookl). The match
and substitute procedures constitute a mechanism for identify-
ing and propagating variable bindings.

The synchronicity hypothesis proposed by A&S claims that
the brain perforns the mateh and substitute computations by (1)

encoding variable bindings through the synchronous firing of

nearons (or clusters of newrons) which represent. respectivedy.

the variable and the constant bound to it, and (2) propagating
bindings by linking the neuron representing variable occur- .
rence x' in the antecedent to the neuron representing variable
occurrence x” in the consequent in such a way that if x’ fires in a
particular phase at time ¢, then x” will fire in that same phase at
time ¢t + d(t). This mechanism searches through the set of
implications in parallel and the time required to infer a particu-
lar conclusion is independent of the size of that set.

The synchronicity hypothesis generates two novel psycho-
logical ideas. First, S&A explain the limit on working memory
capacity as a consequence of the number of temporal phases the
brain can keep distinet, the best attempt so far to ground this
well-known cognitive limitation in neural mechanisms. The
novel idea is embedded in the implication that although there is
a limit to the number of entities that can be considered simul-
tancously, there is no limit on the number of predicates that can
be asserted about those entities. It is not entirely clear how to
distinguish between entities and predicates, but this hypothesis
might nevertheless bring some clarity to the literature on
working memory capacity limitations.

Second, the synchronicity mechanism implies that the brain
spreads variable bindings, rather than activation, through long-
term memory. S&A add the plausible assumption that the
binding information is attenuated with each propagation step;
eventually it becomes too fuzzy to support further inferences.
Intuitively, this idea differs substantially both from the notion of
spreading activation (where activation is a content-free quantity)
and from the notion of gradual decay of working memory
clements, but formal analyses are needed to verify that these
three mechanisms generate different predictions.

S&A also propose a limit on the number of predicate instantia-
tions that can be active simultaneously and a constraint on the
syntactic form of inference rules used in backward chaining.
These two proposals, however, are not derived from the hypoth-
esized neural mechanism. Both are identified at the symbolic
level and motivated with traditional complexity arguments.

The least comprehensible aspect of the synchronicity hypoth-
esis is that it encodes variable bindings in a relation which is not
accessible from inside the brain itself. That neural cluster A is
firing in synchrony with neural cluster B is detectable by an
outside observer, but S&A deny there is any module in the brain
that can detect this fact. This takes getting used to. How can a
relation which cannot be accessed from inside the system affect
further processing? How are the conclusions derived by the
proposed mechanism made available to other cognitive pro-
cesses, for example, planning or decision making?

The proposed mechanism is less integrated into psychological
theory than one might have wished. Even as they appeal to
behavioral data to support their case, the authors deny that the
dynamic storage they are describing can be identified with the
working memory studied by psychologists. In order to tell their
story, S&A have to introduce what they call an overt short-term
memory, an intermediate memory, and an attentional spotlight.
No neural mechanisms are supplied for these components and
the relations between them and the synchronicity mechanism
are left unspecified. Finally, the distinction between reflexive
and reflective reasoning, although solidly grounded in behav-
joral data, comes with some unresolved conceptual questions:
Why are there two reasoning mechanisms? Under what circum-
stances is one or the other mechanism applied? If reflexive
reasoning is so efficient, why do people ever resort to reflective
reasoning?

In the end, the synchronicity hypothesis may or may not win
over alternative hypotheses in the race to account for neuropsy-
chological data. The deeper significance of S&A's article is that it
shows that cognitive science is ready to set aside the fruitless
debate over whether the mind should be desceribed at the level
of neural mechanisms or at the level of symbolic computations
and to begin the difficult but important task of specifving how
the brain carries out the mind's computations.
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Making reasoning more reasonable:
Event-coherence and assemblies

Ginther Palm
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Coherence in neural activity can be useful to bind a ncural
representation together. This is an old idea (Hebb 1949), but still
a convincing one. This idea has been elaborated again in recent
caperimental and theoretical literwure concerned with the
visual areas of the cortex (experimental papers are cited in the
target article; for a discussion of some theoretical issues see
Johannesma et al. 1986; von der Malsburg 1986; and Palm 1986).
It has turned out that the neural networks in these areas can
produce (and make use of?) coherence on a fine temporal scale
{msec) in addition to a coarser correlation of activity in the range
of tens to hundreds of milliseconds. The former has been called
“event-coherence,” the latter “rate-coherence.” The new idea
was that event-coherence could be used to bind the parts (such
as edges and corners) of different objects together while rate-
coherence would simply indicate that these different objects
were presented at the same time in one scene.

Shastri & Ajjanagadde’s (S&A’s) target article transports this
idea from the representation of visual scenes to the representa-
tion of knowledge in expert systems: Concept nodes are broadly
activated to represent the presence of concepts, whereas event-
coherence is used to bind concepts to roles in predicates. In
other words, the essential idea is to use fine timing or event-
coherence for variable binding.

This is a very appealing idea and it is illustrated quite convinc-
ingly in Figures 1 to 13. The idea of combining this system with
an IS-A hierarchy is also convincing and indeed very useful if not
even necessary for any real application of this system.

Only the representation of so-called long-term facts in terms
of presynaptic inhibition of inhibitory synapses seems slightly
awkward and implausible from a neuroscientist’s point of view.
One wonders whether the same cannot be achieved by detec-
ting fine coincidence through excitatory synapses. Another
problem with the representation of long-term facts is the learn-
ing of these facts. During learning these presynaptic inhibitions
must be formed somehow, so that axons from cells representing
“Mary,” for instance, have to find their way to the right terminals
connecting the right predicate argument or role (“recipient”) to
that instantiation of the “give” predicate that was chosen to
represent the particular fact that “John gave Bookl to Mary.”

Furthermore, one consequence of this fact is that John does
not own the book any more, so there should be a way of
disconnecting the corresponding inhibitory synapse in the par-
ticular “Own” predicate that says that “John owns Bookl.” The
problem is actually even worse, since simple disconnection does
not rule out eventually concluding that “John owns Bookl1” from
other facts. So the question remains: How does the inference
system deal with negative evidence?

Another problem with the predicate “give™ is that “John gave
Bookl to Mary,” but later Mary may give Bookl back to John.
After that, who owns Bookl according to the inference system?
Probably both Mary and John. How can the system be pre-
vented from drawing both conclusions? 1 believe it would be
much more reasonable to store as long-term facts not the
propositions about “giving” but rather the resulting propositions
about ownership. Thus some of the inferences should actuallv be
drawn before storage and then stored as long-term facts. Inci-
dentally, the use of the term long-term fact is also a bit mislead-
ing. because it apparently need not mean a fact in fong-term
memory but rather a fact that is memorized during the appre-
hension of a short story, The inference system presented here is
clearly oriented toward answering queries ahout short stories
rather than constituting a consistent complete world-modelasin
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long-term memory. Thus the target article does not address the
problem of what to store and what to infer, which is fundamental
for the organization of large data bases as well as for the
understanding of human long-terim memory.

Despite these obvious problems, most of which are not
specific for the idea presented in the target article, S&A illus-
trate quite convincingly how synchrony can be used for dynamic
binding. Toward the end of their paper, however, when it comes
down to the technical problems (sects. 5 & 6), the nice idea gets
marred with a number of strange and clumsy constructions, in
particular the “up/down switches” and the “predicate banks.” 1
wonder whether one could perhaps get along without these
constructions.

Predicate banks. 1 think the idea of an [S-A hicrarchy should
be extended to the predicates: There is a general “give” and
under it there is a special “give” representing “John gave Book!
to Marv.” Svstematic relationships as in Figure 6 should be
represented between general predicates (“give,” “buy,” “own,”
etc.) and not between their special instantiations as in Figure 12.
The reason for this is simply that the connections between
“give,” “own,” and so on should be implemented only once
(between general predicates) and not between all the different
instances of “give,” “own,” “buy,” that may be represented as
long-term facts. Thus Figure 12 should contain a general “own”
ellipse between “can sell” and “own” and a general “give” ellipse
between “own” and “give.” Furthermore, the connecting paths
should be from “can sell” (which is general) via general “own™ to
particular “own,” and from general “own” via general “give” to
particular “give.” This would not change the arguments given in
S&A’s paper, it would only increase the length of the shortest
path by two steps. Using this kind of IS-A hierarchy also for the
predicates would be a simple alternative to S&A's introduction
of “predicate banks.”

Up/down switches. 1 think these switches can also be replaced
by a more plausible and perhaps simpler mechanism if one uses
a distributed representation of the concepts in terms of Hebbian
cell assemblies (Hebb 1949; Palm 1982; 1990) instead of single
nodes. In this framework it is conceivable to represent an 15-A
hierarchy (of concepts or predicates) in terms of set-containment
of the corresponding assemblies (sets of nerve cells).

For definiteness let us assume concepts that are higher in the
hierarchy are represented as smaller assemblies. Then upward
inference could be performed by raising the average threshold
of neurons in the network (Palm 1982), thus forcing the repre-
sentation to become sparser. Conversely, downward inference
could be performed by lowering the threshold. Furthermore,
the use of cell assemblies for the representation of concepts
makes it possible to represent similarity between concepts in
the degree of overlap between the corresponding assemblics.

Another improvement of the proposed inference system
could be the use of more than only binary logical values for the
certainty of propositions. One could represent the certainty or
confidence for a proposition by means of the rate of firing of the
corresponding unit. This is a little problematic with the model
proposed in the target article, because it uses phase-coherence
with respect to a fixed frequency to represent binding. The
more general idea to use event-coherence (vs. rate coherence),
as mentioned in the beginning, does not have this problem.

Thus a number of technical problems can perhaps be solved
and the representational scheme improved considerably by
using cell assemblies instead of single units for the represen-
tation of concepts and event-coherence instead of phase-
coherence for the representation of bindings. These ideas would
of course have to be worked out move acceurately, but 1 believe
they could help to make the proposed svstem more amenable to
nceurobiological theorizing and perhaps even more useful in
practice.

I abso found the target article very usetul for triggering
thoughts on the practival use for event-coherence = perhaps
even in the visual cortes.
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Useful ideas for exploiting time to engineer
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Shastri & Ajjanagadde (S&A) have found ar interesting way to
exploit the representational potential of time in neural network
models. In most “ncural software engineering,” a correspon-
dence is defined between some of the state vectors of the model
and interpretations in an application domain. The representa-
tional power of a state is limited by its dimension; for example, a
network of N binary-valued nodes can represent at most 2V
different things. But without allocating any further hardware
resources, that representational power can be increased to 28T
by interpreting length-T temporal sequences of states instead of
individual states. It is a space-time trade-off: It takes T times
longer to represent something this way, but 27 times as many
things are representable.

S&A have found a situation in which this trade-off is an
impressively good deal. It is important to have the power to
represent a great variety of variable bindings but most will never
actually get represented in practice, and most of those that do
will not need to be represented for very long. Hence, it is better
to spend some time rebuilding the representational setting each
time a binding needs to be represented than to keep lots of spare
representational capacity on tap.

The space-time trade-off in this system is partly illusory,
because its dynamics is order T — 1 in the state variables, where
T is the number of phases in a fundamental period. This is
because maintenance of synchrony requires connections with
time-delay T — 1 between the p-btu nodes representing corre-
sponding parts of rule-related predicates. Consequently, so far
as the dynamics is concerned, a “state” has N(T — 1) compo-
nents. Whether temporal synchrony is implemented with
simple delay lines or the elaborate mechanism in S&A's section
7.3, a buffer of size N(T — 1) has to be directly or indirectly
implemented for the system to run. These extra degrees of
freedom can be thought of as implemented at a subcellular level.
Computer simulations have to dedicate memory to them.

Although temporal coincidence plays a key role in this sys-
tem, the oscillations seem inessential to its operation. What
matters is that fact predicates “observe” whether their argu-
ments fire synchronously with any constants at least once during
a reasoning episode, and that variables linked by rules eventu-
ally fire at the same time as any constant to which they may be
bound. Periodic reiteration of these coincidences seems a waste
of time. The only important role of the oscillations is in keeping
variables linked by rules synchronised with each other. That
way a constant synchronised with onc is synchronised with all.
The synchronisation among rule-related variables would be
maintained by instantancous propagation of activations, if only
that were possible. Instead, it is achieved (eventually) by delay-
ing propagation for nearly one basic oscillation period, or by
more elaborate mechanisms that require at least one cycle to
take effect. Perhaps there is a cheaper way.

This system’s elegant distribution of representations over
time is not matched by an elegant distribution of representations
over nodes. Grandmother-cell (or cell cluster) representations
of constants and variables are used throughout. This may be just
as well for expository purposes, but greater cfficiency and
potentially interesting properties may arise from more fully
distributed representations. A set of C constants, for example,
can be represented as patterns distributed over O(log C) nodes.
(A spavser representation using o log C nodes, with o > 1 but
nevertheless « log C < €, might have more useful properties.)
Smolensky. Dolan. and others have developed “tensor product”
hinding methods that use distributed representations of con-

stants and variables (Dolan & Smolensky 1989). Unfortunately,
these methods require (a log C}a log V) nodes to represent
bindings among C constants and V variables. C and V refer to all
constants and variables, not just those used in an episode of
reasoning. It seems feasible, however, to distribute the tensor
product over time, using a mixture of the tensor product binding
and phase binding approaches (Rohwer 1943). This offers the
combined advantages of each system. The total number of nodes
required to represent the constants and variables is reduced
from the grandmother-cell system’s O(C + V) to O(log C + log
V). No extra nodes are needed to represent the tensor product,
but some extra time steps are needed, as many as there are
bindings in the episode of reasoning. In addition to providing
increased efficiency, the distributed representations might give
such a system interesting generalisation properties found in the
more popular neural network models.

Do simple associations lead to systematic
reasoning?

Steven Sloman

Department of Cognitive & Linguistic Sciences, Brown University,
Providence, Rl 02912

Electronic mail: sioman@ cog.brown.edu

This is an interesting model that is consistent with several
common intuitions about human reasoning. The image of paral-
lel chains of inference unfolding and refining themselves over
time with related elements bound together through phase
synchrony is appealing. Despite a widely shared belief that
many of cur mental representations have an intrinsically se-
quential character {e.g., our memory for music), few models
have succeeded so well in using time as a representational
device. Unfortunately, the model is devoid of empirical support.
It is so rich in assumptions and detail that vast quantities of
confirming data would be required for it to merit serious
consideration. And the little that is known about human 1eason-
ing makes such data unlikely.

The chief source of evidence appealed to by Shastri & Aj-
janagadde (S&A) is neurophysiological. They argue vehemently
for the model’s “neural plausibility.” But the data they depend
on for this vague claim are disconnected from the domain they
are modeling. The strongest evidence they muster is a sugges-
tion that “the dynamic binding of visual features pertaining to a
single object may be realized by the synchronous activity of cells
encoding these features” in the cat visual cortex. (sect. 7.1.1).
Even if we accept this e.idence at face value, does it tell us
anything at all about how people reason? The binding of object
features may depend on temporal synchrony, but the model
posits a particular parametrized temporal synchronization pro-
cess that binds the arguments of abstract predicates to their
fillers and instantiates the processing of abstract chains of infer-
ence. The data are so far removed from the domain of study that
even S&A admit that the only relation is analogical. Whether or
not the brain makes use of temporal synchrony in object percep-
tion has no bearing on how we reason abstractly, especially
because we can guess only roughly at what cither of the underly-
ing psvchological processes are. S&A lift a rich and promising
metaphor (binding through temporal synchrony) to the status of
scientific evidence. This could be more casily ignored if it were
not so basic to their argument.

S&A also report evidence suggesting that their model allows
them to predict working memory capacity. But many more
firmly grounded theories already account for working memory
data (c.g.. Baddeley 1986),
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A model of human reasoning should presumably have, first
and foremost, implications for human reasoning. Accordingly,
S&A make a few relevant predictions (sect. 8.2.6) but support-
ing data or even suggestive examples are not provided. Sane of
the model's predictions seem rather arbitrary and therefore
unlikely to be confirmed, especially those having to do with
restrictions on when variables can appear in the antecedent or
consequent of a rule. Other predictions are just misguided. For
example, the model predicts that people can make transitive
inferences using only a small number of relations, but exam-
ples of transitive inference that pose no difficulty for people
can be constructed casily, even from esoteric relations. Consid-
er the transitive sequence Pimplier(teenager,, teenager,) &
Pimplier(teenager,, teenager,) & . . . & Pimplier(teenager,, _,,
teenager,). The inference Pimplier(teenager,, teenager,) can be
drawn eflortlessly (even reflexively). People are terrific at con-
structing linear orderings when the context clearly calls for one.

The model’s problems begin with its failure to capture aspects
of people’s fallibility that much simpler connectionist models are
able to capture easily. For example, people do not always
respect the logical principle of category inclusion. To illustrate,
when evaluating the strength of an argument of the form
“premise statement, therefore conclusion statement,” people
often fail to take inclusion relations between premise and con-
clusion objects into account. For example, they fail to judge an
argument such as “Animals use norepinephrine as a neuro-
transmitter, therefore reptiles do” as perfectly strong. In fact, on
average they judge it substantially weaker than the argument
“Animals use norepinephrine as a neurotransmitter, therefore
mammals do.” A connectionist network much simpler than the
one described in the target article provides a straightforward
account of this finding (Sloman 1993). People scem (in their
reflexive state) to reason less in accordance with many of the
rules of logic or IS-A hierarchies than they do with heuristics
that depend on similarity, metaphor, and the surface structure of
statements (see, e.g., Klayman & Ha 1987; Lakoff 1987; Wason
1960).

Examples of people’s tendency to rely on similarity over logic
are found in demonstrations of violations of the conjunction rule
of probability. The conjunction rule states that because the
extension of the conjunction of events A&B necessarily includes
the event B, P(B) = P(A&B). This rule is violated in that, for
example, people who are given a description of a man who is
intelligent, unimaginative, compulsive, and generally lifeless
are more likely to infer that he is an accountant who plays jazz for
ahobby (A&B) than they are to infer that he simply plays jazz for
a hobby (B), apparently because the description is more repre-
sentative of A&B than it is of B alone (Tversky & Kahneman
1983). The point is not that an account of these particular
phenomena could not be generated using the representational
scheme of the model described in the target article, but rather
that the model gives us no a priori reason to expect these basic
characteristics of human reasoning. The model serves as an
existence proof that a network of nodes and links can use
temporal synchrony to traverse an inferential dependency
graph. But many interesting qualities of human reasoning are
not explained by such a graph.

To argue that such systematic crrors are the result of the
intrusion of reflective processes on a reflexive process that is
otherwise logical is just the opposite of what we should expect
from psycho-logic. Let us hope we can put more faith in
conclusions we come to upon reflection, on the assumption that
our quicker, dirtier reflexive thinking will sometimes be wrong.

One common approach taken to at least motivate the empiri-
cal validity of an claborate model that rests on many assumptions
is to show that it is able to account for some interesting set of
data. The model would be much more convincing if S&A
showed that it could in some sense comprehend the Little Red
Riding Hood story with which they begin their discussion, or
even some simpler story. Without even this kind of empirical
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support to buttress the model, the target article leaves us with
little other than a potentially promising metaphor to describe
human reasoning. But because the mind is so good at generating
metaphors, a new metaphor is not something the study of the
mind really needs.

Phase logic is biologically relevant logic

Gary W. Strong
College of Information Studies, Drexel University, Philadelphia, PA 19104
Electronic mail: strongduvm.ocs.drexel.edu

The target article by Shastri & Ajjanagadde (S&A) presents an
exciting new model of binding-dependent logic (phase logic)
that is consistent with some very basic human information-
processing limitations. Their interpretation of Miller's agic
number 7£2 (sect. 8.2.3) in terms of binding limitations of a
synchronous oscillatory system provides a ground-breaking link
between this well-known limitation of human cognition and
underlying neural architecture. In addition, S&A have clarified,
if their model holds up, the well-known paradox of why it is so
difficult for novices to become experts upon being presented
with rules derived from expert behavior. Until rules become
part of the long-term knowledge base (LTKB), they must be
processed reflectively rather than reflexively, and, in order for
them to become part of the LTKB, the rules must have been
relevant in a number of cases (sect. 8.5). Overall, S&A’s phase
logic model offers an intriguing alternative to traditional Al
approaches such as symbol rewrite systems, showing how bio-
logically relevant models can exhibit a systematic correspon-
dence between arguments of first-order predicates and the
appropriateness of argument correspondence in terms of class
membership. It is a shame that S&A did not report the simula-
tion results they mention in section 10, because they could have
been more convincing in their arguments, having shown how
they dealt with the details of instantiating their model while
preserving biological realism.

A small criticism I have of the target article concerns the way
S&A interpret the logic circuit of their fact encoder. Their
circuit for encoding give(John, Susan, x) will not recognize
give(John, Susan, Car7). Their interpretation of give(John,
Susan, x) is “John gave Susan something,” which is inconsistent
with the closed world assumption (CWA) the authors assume in
section 4.4. The CWA requires that a “don’t know™ answer be
viewed as a no answer and it implies a failure to recognize
give(John, Susan, Car?). A proper circuit for encoding the fact
“John gave Susan something” is not the one S&A illustrate but
one that makes use of their 1S-A hierarchy by connecting an
abstract object to the 7-and node as an inhibitor of the g-obj line.
A description of such an implementation would clarify their
interpretation of unbound arguments in phase logic.

1 have a more substantial criticism of S&A’s claim that nodes
cannot bind with more than one entity at the same time. For
example, in section 4.8 they claim that the node Animal cannot
fire in synchrony with both Tweety and Sylvester at the same
time. In a periodic phase logical system this may be a reasonable
claim but there is no reason to require that phases be periodic.
This unnecessary claim led S&A (in sect. 5.2) to what 1 believe is
an implausible architectural feature, that of concept clusters,
cach with k, banks of p-btu nodes, where &, is the multiple
instantiation constant and refers to the number of dynamic
instantiations a concept can accommodate. The Strong and
Whitehead (1989) simulation, to which S&A refer, showed that,
with an appropriate architecture of spiking neurons such multi-
ple bindings are possible. Qur simulation demonstrated evelic
activity in overlapping subsets of minicolumns (Strong & White-
head 1989, p. 396). The architecture we used includes, as basic
processing units, minicolumns that contain an ensemble of
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neurons that share inputs. Such sharing also allows the ensem-
ble to achieve independence from absolute refractory periods of
individual nceurons as well as from “noisy propagation delays.”
The latter is an implementation problem recognized by S&A
(sect. 7.3) and handled through group averaging within
ensembles.

The use of mutually inhibitory minicolumns as basic process-
ing units caused the Strong and Whitehead (1989) simulation to
exhibit a behavior that obviates another biologically implausible
requirement that S&A claim is necessary for their model:
Entities used in argument bindings must have specific delays
associated with them (sect. 4.3) to produce a phase separation
between different entities. Whereas a central control (such as
the hippocampus) might play a role in separating entities (as
suggested by Eichenbaum et al. 1989), S&A have ruled this out.
Strong and Whitchead's simulation demonstrated that entity
separation can be achieved, in any case, without central control
and without concept clusters, even with overlapping node sets.
This can be seen in our simulation output, where the boundaries
between phases are fairly sharply defined (see Figure 1, which
shows a more recent sample of our simulation output).

In sum, S&A’'s model is a very important contribution to the
ficld of cognitive science in helping to bridge the logic-based
approaches of traditional Al and biologically relevant models of
human cognition. They have constructed this bridge with a
model whose architecture explains some very basic limitations
on human information processing. With a bit more attention to
the details of actual neural processing units, however, the power
of their model may be substantially improved. I suspect that
they encountered this need in the simulations they indicate they
conducted.

Figure

1 (Strong).
frec-running mode of operation following the learning of three
overlapping patterns. Each line represents the output of one
minicolumn. There are three different “phases” of output activ-
ity that bind different subsets of minicolumns, and the transi-

“Three staffs™ of simulation output during a

tions between the phases are fairly well defined. The box
surrounds the second phase. which has one minicolumn in
common with the first phase. The phase that follows the box has
one minicolnmn in common with the boxed phase.

Temporal synchrony and the speed of visual
processing

Simon J. Thorpe

Institut des Neurosciences, Départment Neurosciences de la Vision,
Université Pierre & Mane Curie, 75005 Paris, France

Electronic mall: thorpea ccr jussieu.fr

Shastri & Ajjanagadde (S&A) have provided a remarkable exam-
ple of how ideas in cognitive science can converge. When 1 first
heard Lokendra Shastri describe his work with Venkat Aj-
janagadde on using temporal synchrony to tackle the dynamic-
binding problem in 1989, they were approaching the problem as
computer scientists. At about the same time, the work on
oscillatory activity in the visual cortex was beginning to cause
uite a stir in the neuroscience community (Eckhomn et al. 1988,
Gray ct al. 1989), but at that point these two different ap-
proaches appeared quite separate. In the spring of 1990, how-
ever, a meeting on temporal coding in Paris provided an oppor-
tunity for interdisciplinary discussion and the cross-fertilization
ofideas. Clearly, S&A have taken the interdisciplinary challenge
scriously and have worked hard to make their model consistent
with neurophysiological and psychological data.

I have some more specific points. S&A devote nearly all of
their target article to an analysis of language understanding with
an appeal for experimental data to test their ideas (sect. 8.2).
Although psychological data on language comprehension are
available, it will probably be quite difficult to test the neuro-
physiological plausibility of such a model in this domain, be-
cause so little is known about the ncuronal activity during
language understanding (though sce, e.g., Creutzfeldt et al.
1989). S&A do mention (sect. 2.5), however, that similar prob-
lems of dynamic binding arise in vision. Indeed, the connection-
ist model recently developed by Hummel and Biederman (1992)
also uses an approach based on synchrony of activation to tackle
the problem of binding elements during shape recognition. Can
detailed knowledge about visual system function be used to test
the feasibility of $&A’s model of language understanding?

A few years ago we pointed out the serious computational
problems posed by the remarkable rapidity with which the
visual system can process images (Thorpe & Imbert 1989). We
argued that processing was so rapid that a great deal of process-
ing must be possible on the basis of only one or at most two
spikes per neuron. The argument was as follows. There have
been a number of reports of neurons in the monkey temporal
lobe with responses selective for complex visual stimuli such as
faces. One of the most remarkable features of such neurons is
that they typically respond only 100 to 140 msec after stimulus
presentation. On the basis of anatomical studies it would appear
that such neurons are at least 10 synapses away from the
photoreceptors of the retina (information has to go through
LGN, VI, V2, and V4 en route), which implies that each
processing stage has only approximately 10 msec before the
information has to be forwarded to the next layer. Since the
firing rates of cortical neurons rarely exceed 100 to 200 spikes
per second, this means that even if visual processing involves
essentially feed-forward processing, much must be achieved on
the basis of only 1 or 2 spikes per neuron.

The strength of this argument has been considerably en-
hanced by some recent data of Oram and Perrett (1992), who
looked at the time course of the face selectivity of neurons in the
primate temporal lobe and reported that selectivity is fully
present during the first 53 msec of the neuronal response even for
neurons with onset latencies of less than 100 msec. Other data
on neurons at carlier stages in the visual svstem from our own
laboratory also found that selectivity was typically present right
from the very start of the neuronal response, both in the case of
orientation selectivity (Celebrini etal. 1993 Thorpe etal. 19589)
and selectivity to stereoscopic disparity (Thorpe et al. 1991,
Such dataimply that information processing mnst be very rapid.
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Oram and Perrett conclude that “the only way to account for the
rapid discrimination is to consider a coding system in which the
first spike from multiple sources is used to transmit information
between stages of processing” (p. 70).

But if processing of even complex stimuli such as faces can be
achieved on the basis of only one or perhaps two spikes per
neuron, what of S&A’'s model, in which several cycles of syn-
chronized activity are required to allow reasoning? One re-
sponse would be that although there is clear evidence for a
hierarchically organized architecture in the case of the visual
system - cells in the temporal lobe are something like 10
synapses away from the retina — the same is probably not true for
the neural structures involved in language understanding. Thus
while synchronous firing may be difficult to obtain across the
different hierarchical levels involved in visual processing (at
least for the rapid visual processing that leads to the activation of
face-selective neurons in the temporal lobe), this may not be a
problem for language processing.

It may be that the visual system does not actually need
oscillatory activity to establish the sort of grouping-related
synchrony of firing required by S&A. One of the surprising
results of recent studies of visual response latencies in the visual
cortex is the remarkable range of onset latencies found. Under
the same stimulation conditions, some visual cortical neurons
will start firing 40 msec after stimulus onset whereas others have
onset latencies of over 100 msec {Celebrini et al. 1993; Thorpe et
al. 1989; Vogels & Orban 1991), with most cells starting to fire
with latencies between 50 and 70 msec. This range of latencies is
sufficiently large to mean that synchrony can be used to group
subsets of neurons even in the absence of oscillatory activity. For
example, one set of features could be grouped if the relevant
neurons fired around 50 msec, whereas another set of features
could be grouped by having the relevant neurons fire around 60
msec. As Eckhorn (1991) and others have already pointed out,
stimulus-induced synchrony may provide an alternative way of
grouping features without the need for oscillatory activity.

In conclusion, the use of stimulus onset induced synchrony in
the visual system may allow the operation of a feature-binding
process similar to the one proposed by Shastri & Ajjanagadde.
The major difference is that it can potentially work even in
feedforward networks and does not require the use of oscillatory
activity, a significant advantage given the difficulty that a num-
ber of researchers have had in demonstrating oscillatory re-
sponses with static visual stimuli (see, e.g.. Tovee & Rolls 1992).

Should first-order logic be neurally
plausible?

David S. Touretzky= and Scott E. Fahiman®

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213-3891

Electronic mail: adstacs.cmu.edu, vsefwcs.cmu.edu

Part of the attraction of NETL (Fahlman et al. 1983), but also a
source of difficulty, was that it conflated a theory of representa-
tion with a parallel computing architecture. The emphasis on
parallel implementation discouraged people from looking too
closely at the representation ideas. Shastri & Ajjanagadde (S&A)
appear intent on repeating this mistake, with claims of neural
plausibility further clouding the issue. Their representation is
not very humanlike - but notice how well it fits the computing
architecture. Their architecture is not very brainlike - but look
at the complex inferences it supports. Unfortunately, when
teased apart and eritically examined, neither component holds
up as a credible proposal about human cognition.

Let us first consider the representational component. Hu-
mans can make certain kinds of inferences very rapidly, an
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observation that has motivated many proposals over the years,
including NETL. S&A want to identify human reflexive reason-
ing with a restricted subset of Hom clause logic. But where is
their evidence in support of this claim? The only shred of
justification we can find is that they have, lurking in the wings,
an claborate scheme for wiring up an implementation.

Human reasoning does not seem to have much in common
with the type of inference at the core of the S&A proposal. S&A
tackle this difficulty in two ways. In sections 1.4 and 9.) they
exclude entire classes of phenomena - analogical reasoning,
episodic memory, imagery, and associative recall by fast set
intersection — that would appear to be more central to human
reasoning than strict logical deduction (Lakoff 1987; Lakoff &
Johnson 1980). But in section 5.5 they promise something a little
more flexible than modus ponens, namely, soft rules -~ vaguely
defined and unimplemented - and defeasible inference. We
also note a stab at abduction in Ajjanagadde (1991).

These crude initial forays into an area far more complex than
logical deduction are no substitute for a credible theory of
human informal reasoning, namely, something comparable in
scope to Collins and Michalski (1989). Thus, the crux of the S&A
theory remains a certain restricted, first-order logical language
put forth as a language of the brain, with nothing to recommend
it - as a representational theory — over far more sophisticated
nonconnectionist proposals.

The second component of S&A’s proposal is a supposedly
neurally plausible implementation, a claim that falls apart al-
most immediately. It is fine to propose synchronous firing as a
binding mechanism, but this feature cannot serve as the sole
biological justification for what turns out to be a complicated
parallel computer architecture.

As a neural model, the S&A proposal suffers from multiple
fatal flaws. It is essentially localist, postulating disjoint neural
populations for distinct concepts. Yet it is also highly redundant,
requiring multiple copies of any concept that might participate
in more than one simultaneous relationship. These multiple
copies are controlled by a switching mechanism whose wiring,
in terms of complexity and specificity of connections, is unlike
any neural circuitry described in the literature. We also ques-
tion whether a system that requires oscillation with up to ten
separable, stable phases is any more neurally plausible than
naive “computer in the head” models. Certainly, nothing like
this precise time-keeping has ever been observed in brains.

We conclude with some remarks on the relation of this work to
the NETL system. We sce nothing in S&A's proposal that cannot
be done by NETL, which also exhibited some additional abilities
such as set-intersection. 1t is a straightforward operation in
NETL to include statements like scared-ofiy.x) in the prototype
definition for the preys-on(x,y) relation, and to inherit the
former whenever the latter is asserted for specific individuals.
The S&A model can be extended to pass fuzzy quantities rather
than discrete markers, but so could NETL (Fahlman et al. 1983).

NETL had a central controller that told the knowledge repre-
sentation network what to do on a cvele-by-evele basis. S&A
observe that this is not neurally plausible and claim that a
significant contribution of their work is to show how such a
system can run without a central controller. This claim is stated
repeatedly, but it reminds us of the Wizard of Oz: “Pay no
attention to the man behind the curtain.” We believe that the
authors have hidden the controller, not eliminated it.

It is true that the S&A proposal does not require cvele-by-
cvele control. Instead of having a controller step markers np-
ward or downward through the type hierarchy, S&A create two
distinet parallel networks. One propagates phase-based markers
upward from a starting point and the other passes markers
downward. Some external ageney must still select which of
these networks is to be active, but once this has been done. the
marker propagates as far as possible in the specitied direction.
The anthars can fairly claim that they have eliminated evele-by-
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cycle control but at the cost of further replication of network
hardware and the loss of certain useful operations that require
more precise control.

In any case, there remains a need for some agency to manipu-
late the many control lines, set certain nodes oscillating with the
same phase, query the network via the appropriate e and c lines,
and so on. In section 10, S&A suggest that this is not done by a
“controller” but rather by the “parser.” It appears that the
central controller has been eliminated by distributing a few
minor elements and renaming all the rest.

Dynamic-binding theory is not plausible
without chaotic oscillation

ichiro Tsuda

Department of Artificial intelligence, Kyushu Institute of Technology, kizuka,
Fukuoka 820, Japan

Electronic mall: tsuda@dumbo.ai.kyutech.ac.jp

Dynamic binding of knowledge is one of the essential processes
for both “reflexive reasoning” and “reflective reasoning” in the
human cognitive system. Shastri & Ajjanagadde (S&A) deal with
reflexive reasoning in terms of connectionist models of dynamic
binding. This approach may assure a plausible model of the
process of dynamic computations. Indeed, S&A propose a
reasonable model of reflexive reasoning. To justify the model
biologically and from the viewpoint of dynamical theory, how-
ever, they refer to the synchronization or phase locking of
periodic oscillations that was observed in the visual cortex of the
cat (Eckhorn et al. 1988; Gray et al. 1989) and monkey (Kreiter
& Singer 1992). This commentary is devoted mainly to the
question: Could synchronized or phase-locked periodic oscilla-
tions provide a plausible basis for the dynamical model of
reflexive reasoning?

In the Gray et al. (1989) experiments, rapid damping of both
auto- and cross-correlation functions was found. There are two
possible causes of the damping: One is due to inherent chaos,
and the other is perturbation by noise. The latter possibility can
be rejected. We see an apparent feature of the observed correla-
tions, namely, time symmetry of autocorrelations but time
asymmetry of cross-correlations (see Fig. 1-3 in Gray et al.
1989). When the periodic oscillation is perturbed by noise,
cross-correlation between two such oscillators should be sym-
metric in time as well as in autocorrelations because of the
statistically stationary motion. The assumption of the existence
of chaotic oscillators, however, leads us to a reasonable explana-
tion of the distinct feature of correlations that a transient process
accompanied by desynchronization between chaotic oscillators
brings about time asymmetry of cross-correlations, preserving
time symmetry of autocorrelations due to inherent stationary
chaotic motion.

In addition, we examine whether or not desynchronization
can be achieved by noise, since there is still a possibility of the
participation of noise in the transient process, which may give
rise to asymmetric cross-correlations. Desynchronization is due
to a separation of corresponding orbits and the degree of
separation can be measured by the degree of orbital instability
indicating an exponential separation of nearby orbits. The
Lyapunov exponent is the average rate of this separation in unit
time. Since desynchronization should start unless all compo-
nents of the Lyapunov spectrim are negative, the value of the
nonnegative Lvapunov exponents determines the degree of
desynchronization. The contribution especially of the largest
one, A, will be dominant. 1t is reasonable that the time necessary
for desynchronization is of the same order as the inverse of the
largest Lyvapunov exponent. (A 1), since A ! is the time
necessary for the e magnification of a tiny initial separation. If

noise participates in desynchronization, infinite time is theoret-
ically needed for desynchronization, since in the case of noise A
is zero. '

Thus, we conclude that the cause of the damping is the
existence of inherent chaotic oscillators. At the moment it is
difficult to estimate the correct value of the orbital separation of
the neural oscillations; it seems plausible, however, to estimate
it as the order of one per one cycle of oscillation. Hence, as an
order-estimation, the desynchronization takes 20~25 msec.
Taking inte account a cut-off-frequency of around 100 Hz in the
experiments, the unit time of the observed oscillations should
be 10 msec. Then A is estimated at around 0.5 per unit time,
which is a reasonable value from the viewpoint of dynamical
theory. Thus, the reasoning of S&A must be amended in its
“biological interpretation” of their theory. Actually, our prelimi-
nary numerical simulation of the chaotic model for cortical
neuro-oscillations shows much faster desynchronization than
the theoretical estimation. In most cases, a time less than one-
half cycle of oscillation is required.

The neural (de)synchronization is a more rapid process, so the
synchronized state cannot be sustained for the few hundred
milliseconds supposed by S&A. It is plausible that the neural
synchronization makes rapid judgments by feature detection
(Gray et al. 1989), or by initiating cognitive processes (Koemer
et al. 1987). Throughout the process of thinking, including
“reflexive reasoning,” a chaotically itinerant motion among “at-
tractors” (we call it “chaotic itinerancy”) seems much more
plausible, one that can generally appear in systems with large
degrees of freedom (Davis 1990; Ikeda et al. 1989; Kaneko 1990,
Tsuda 1991). In such itinerant motions, the system is temporally
expressed as a “small” system, where “small” means the partici-
pation of only a few dominant modes accompanied with a
number of inactive modes that could be active at the next period
of the process. These modes can be activated as a chaotic mode
by alarge number of interactive neurons (Freeman 1987, Skarda
& Freeman 1987). The temporal reduction of the number of
active modes must stem from spatial coherency (Freeman 1991),
but not from “phase locking.”

Related to the above discussions, 1 would also like to comment
on the possibility that von der Malshurg’s model for the cocktail
party effect (von der Malsburg & Schneider 1986) has nothing to
do with the neural synchronization observed in the experi-
ments. The cocktail party effect is more dynamic and complex,
hence its explanation needs such a mechanism of dynamic
information processing that both coherence in space and chaotic
itinerancy in time play a role in sustaining memories during a
period of a few hundred milliseconds to a few seconds, and in
searching and linking appropriate items in the LTKB (long-term
knowledge base). Here, spatial coherence is necessary for the
dynamic link of neural activities over wide cortical regions,
especially related to auditory processing, short-term memory,
and thinking. Chaotic itinerancy creates the dynamic sustaining
of memories and the processing of meaning, namely, a dynamic
link of memory items (Tsuda 1991). We have shown that a
coupled chaotic system and a chaotic neural network, wi... h can
exhibit chaotic itinerancy, sustain any information fed from
outside by means of propagating local chaotic activities despite
the elementary chaotic process (Matsumoto & Tsuda 1987,
Tsuda 1992).

In addition, 1 recommend S&A to the following literature
concerning the roles of neural synchronization. It has been
hypothesized. for example, that synchronization of neural os-
cillations may participate in the processes of rapid interpreta-
tion, image synthesis, relation formation in knowledge base,
and parallel byte-formation in the sequential flow of visual
information (Holden & Kryukov 1991, Koerner et al. 1987,
Reithoeck et al. 1990; Shimiza & Yamaguchi 1987). Further-
more, concerning dvnamic features in coupled oscillator sys-
tems. stadies by “coupled map lattices™ (Kancko 1989 and
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“phase dynamics” (Kuramoto 1991) should not be overlooked.
The latter concerns mainly a periodic and synchronized regime,
and the former treats various kinds of complex dynamic
regimes.
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When I was a first-year undergraduate psychologist I developed
an interest in the idea that cognition might have something todo
with the brain, and was promptly dispatched to the department
of physiology to learn something about my chosen organ. After
hearing a bit about nerve cells, impulses, and such, I produced a
gigantic first essay in which I tied up what 1 had learned of
physiology into an account of how the brain worked in what, 1
was convinced, was a monumental achievement in quality as it
was in quantity. As it happened, my unfortunate tutor, an
eminent Spanish nociception researcher, had so queasy a feel-
ing about my contribution that he did not fill the pages with
learned red-ink disputation of the fine details of my proposals, as
I expected, but simply said to me as he handed it back: “Like all
psychologists, you have a scant regard for the facts!”

So I can sympathize with Shastri & Ajjanagadde (S&A). Here
they are, responding, perfectly understandably, to a supra-
threshold signal above the noisy hubbub of neurobiology, when
this neurobiologist has to say that the phenomenon on which
they base their ideas probably does not exist in the primate. As
the primate brain is the only one that we know is capable of
systematic reasoning, this may be a problem for them. But 1
sympathize even more with S&A, since only rather close inspec-
tion of the neuroscience literature reveals this problem: The
oscillophiles cited in the target article — in what one hopes is just
a temporary failure of elementary scholarship — never remark in
print on work which disagrees with them. And the problems to
which they studiously fail to refer are serious enough that they
are not adequately dealt with in a few dismissive remarks in
S&A's note 27.

Basically, the problem is that the cat findings do not replicate
in primate visual cortex. For an alternative reading list on this,
S&A might have considered Bair et al. (1992), Kiper etal. (1991),
Gawne et al. (1991), Young et al. (1991; 1992), as well as the two
papers noted in note 27, which they dismiss so lightly (Rolls
1991; Tovee & Rolls 1992). As far as I know, the Young et al.
(1992) study is the most comprehensive primate study to date,
so I will briefly review its contents.

We sought to replicate the cat findings in the monkey. To do
this, we recorded multiunit activity (MUA) and local field
potentials (LFP) in areas V1 and MT, and MUA from the
inferotemporal cortex (IT) of macaques. Recordings in all arcas
were made under conditions of stimulation and anaesthesia as
close as possible to those in the cat. In addition, we recorded
MUA in the IT of awake behaving monkeys while the monkeys
performed a face discrimination task. The data were analyzed
with methods taken from Engel et al. (1990), so that the primate
and cat results could be compared directly.

In V1, with drift‘ag bar stimuli, all frequency spectra of the
LFPs showed the greater part of their power to be concentrated
in the low-frequency components, and on stimulation LFP
power spectra showed broad band increases in amplitude and
not a shift in power from low to mid-frequency as has been
reported in the cat. Indeed, the effects were alimost the opposite
of those in the cat: Stimulation was associated with statistically
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significant increases in power particularly at the low frequencies
with a smaller increase across alnost the entire spectrum. This
wide-band stimulus-related increase in spectral power may have
simply reflected that cells near the electrode fired more strongly
when stimulated than when not, and did so at a variety of
frequencies. The changes in frequency distributions would not
provide narrow-band high-amplitude field potentials to which
spike activity could become synchronized, and concomitantly,
the oscillating MUA responses that we did see were in the alpha
range, and there was no stimulus dependence.

In area MT, all LFP frequency spectra again showed most
power to be concentrated in the low-frequency components and
there were broad-band increases in amplitude on stimulation.
All oscillating responses were in the alpha range and there was
little evidence that they were stimulus related. In both VI and
MT, therefore, with moving stimuli (cf. S&A, note 27) that were
very similar to those used in the cat experiments, there was no
sign of the cat oscillation phenomena. It may be worth noting
that this was not a “finding of no effect,” which would not
distinguish between insensitivity of the statistical analysis and
the absence of the phenomenon: The stimulus effect in the LFP
analyses was statistically reliable in all frequency bands except
those centred on the alpha range, and the statistical procedures
were able to detect oscillations at frequencies different from
those observed in the cat.

In the IT of anaesthetized monkeys, no MUA responses
indicated the occurrence of oscillation. In monkeys trained to
make a differential response to a small set of human faces versas
alarger set of faces (at which discrimination they achieved better
than 90% correct performance), only two MUA recordings
showed oscillations in the gamma range. One oscillating re-
sponse was associated with stimulation and the other was associ-
ated with the absence of stimulation.

These results suggest that oscillating responses in the gamma-
frequency band are remarkably rare in conditions very close to
those in the cat studies and even in conditions that would be
thought to require the binding of features into a representation
coherent enough to form the basis on which the discrimination
decision could be made. The fact that such oscillations were not
stimulus dependent also suggests that oscillations are not re-
quired for feature binding in the studied regions of the monkey
visual system.

Having used the methods of Engel et al. (1990) to classify the
data as oscillating or not, we noticed a number of methodological
problems with this and related methods. For example, the cat
researchers forgot to take account of the goodness-of-fit between
the Gabor functions (whose parameters were used to classify the
responses) and the correlograms. Obviously, ifone does not care
how well a description fits, then Mrs. Thatcher could, for
example, be described as an enthusiastic European: If the
parameters of a description are to be used to classify something,
the description should fit the described thing well. We found
that Type 1 error due to this factor alone could vary between 17%
and 100% overestimation. Similarly, “burst,” “delayed inhibi-
tion,” and “return” components, which are sometimes seen in
correlograms and which could be consistent with being in the
chaotic domain and not only the oscillatory domain, would
unfortunately have been included as “oscillating responses”
according to the methods of Engel et al. (1990). These meth-
odological difficulties leave the empirical status of some findings
in this area rather uncertain. For example, how can we know
that the “long bar experiment” did not involve false positives?

It scems unlikely, in the light of these empirical facts, that
stimulus-related oscillations could he a general phenomenon,
and unlikely, therefore, that a periodic temporal “code™ is a
general solution to the problem of binding the separate features
of an object, visual or semantic, into a coherent representation.
This is a nice illustration of the dangers of having one’s psycho-
logical theory disproved “by some irrelevant physiological re-
search” (Broadbent 1958), and 1 suppose that S&A have two




options. Either they take Broadbent seriously, and stop building
models based, even loosely, on what's happening in neurcbiol-
ogy. which would be a shame, or they pay a bit closer attention
next time.

As for the rest of S&A's target article, it seems to me to be
terribly brave, but, in the end, just cognitive science.
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Our response is organized into five sections. In section R1
we respond to issues concerning the biological plau-
sibility of our model. In section R2 we discuss questions
about its cognitive/psychological significance. Several
commentators pointed to alternative approaches to dy-
namic bindings and reflexive reasoning. We discuss these
in section R3. In section R4 we respond to some com-
ments about learning. The remaining issues are discussed
in section R5. In what follows we refer to our model as
SHRUTI.!

R1. Biological plausibility

Before responding to commentaries about the biological
plausibility of SHRUTI let us repeat what we said in section
1.4 of the target article: “Neural plausibility is an impor-
tant aspect of this work - we show that the proposed
system can be realized by using neurally plausible nodes
and mechanisms, and we investigate the consequences of
choosing biologically motivated values of system parame-
ters. Needless to say, what we describe is an idealized
computational model, and it is not intended to be a
blueprint of how the brain encodes an LTKB (long-term
knowledge base) and performs reflexive reasoning.” We
would like to stress that SHRUTI is an idealized computa-
tional model, and when we claim that it is biologically
plausible we mean that it is possible to realize its essential
components — the behavior of various types of nodes and
the functionality of the proposed network ~ using neural
wetware.

R.1.1. Synchrony, oscillations and biological plausibility.
One of the major issues raised in the commentary con-
cerns the biological reality of oscillations. With varying
degrees of emphasis Young, Freeman, Tsuda, and
Eckhorn point out that periodic (oscillatory) activity does
not occur in the brain. Freeman and Young even go on to
suggest that sHRUTI is therefore not biologically plausi-
ble. This conclusion rests on a mistaken understanding of
the role of oscillations in SHRUTI.

R1.1.1. Oscillations are not essential for the functioning
of suruti. The essential feature of neural activity required
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by SHRUTI is synchronization of cell activity and the
propagation of synchronous activity along connected cell-
clusters. Since transient oscillatory activity seemed like a
natural way of realizing such a behavior, we adopted
oscillations in our model, but oscillations per se are not
essential for the functioning of SHRUTI. It is therefore
incorrect to link its biological plausibility with the exis-
tence or nonexistence of oscillations in the brain. The
crucial question is this: Is synchronous activity biolog-
ically real? The nonessential role of oscillations in our
model is clearly recognized by Rohwer and Strong (and to
some extent by Thorpe).2 Strong also points to some
architectural simplifications that might result from drop-
ping the periodicity requirement (but see R1.4). Eckhorn
and Freeman do discuss the possibility that dynamic
bindings may be represented by aperiodic (nonrhythmic)
synchronous activity in the brain, but they fail to rec-
ognize that such a representation is compatible with
SHRUTI.

The primacy of synchronization in the representation
and propagation of dynamic bindings is pointed out at
several points in the target article, including the title.
“We represent dynamic bindings between arguments and
fillers by the synchronous firing of appropriate nodes”
(sect. 3, para. 3; see also sect. 1.3, para. 3; and sect. 3.1,
para. 2). The behavior of p-btu nodes in section 3.2 and
7-and nodes in section 3.3 is defined in terms of general
synchronous activity and then elaborated for the case of
oscillatory activity. The output of 7-or nodes has been
specified as being oscillatory. This is not critical, however,
and it is trivial to modify the design so that the output of
7-or nodes may be assumed to be a burst of activity whose
duration is comparable to =,,,,.

In the aperiodic case, the parameters ,,, and 7.,
correspond to the minimum and maximum allowable time
between two consecutive firings of a cell-cluster involved
in synchronous activity. The interpretation of w continues
to be the width of the window of synchrony (see sect. 3.1,
last para.). So the basic architecture of SHRUTI remains
the same even if we admit aperiodic synchronous activity.
The propagation of bindings now parallels even more
closely than before the propagation of activity along “syn-
fire chains” (Abeles 1982).

Itis important to note that dropping the requirement of
periodicity does not change the predictions about reflex-
ive reasoning. The restriction on the form of rules, the
bounded depth of reasoning, and the constraints on the
capacity of the WMRR (working memory underlying
reflexive reasoning) remain the same. The exact numeric
value of the ratio 7,,,,/w, however, may have to be revised
using the appropriate neurophysiological data.

R1.1.2. What led us to oscillations? When he asserts that
our ideas and SHRUTI are based on the phenomenon of
oscillatory activity in the animal brain, Young (para. 2) has
it backwards. On the contrary, the design of SHRUTI was
driven by the computational constraints on connectionist
models enumerated in section 1.2 and the complexity
requirements of reflexive reasoning discussed in section
1.1. The computational constraints prompted us to usc
temporal synchrony as a basis for representing dynamic
bindings (to obviate the need of propagating pointers or
symbols). We chose periodic (oscillatory) activity simply
because oscillations seemed like the most straightforward
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and natural way of incorporating synchronous activity. As
Thorpe points out, it was only later that we heard about
the evidence for oscillatory activity in the brain.

R1.1.3. Can we conclude that oscillations are ethereal?
The biological reality of oscillations is a matter of contro-
versy. There are a growing number of reports of oscilla-
tory activity in the brain — these include findings in the cat
(see target article for references), squirrel monkey (Liv-
ingstone 1991), macaque (Engel et al. 1992; Kreiter et a).
1992), and even humans (Lado et al. 1992).3 At the same
time, we have negative evidence concerning oscillatory
activity — we cite some papers in the target article and
Young cites some additional findings. So the issue is far
from settled. In spite of such conflicting evidence,
Young's emphatic assertion that oscillations do not occur
in the primate brain and are unlikely to play a role in
the representation of dynamic bindings does not seem
justified.

R1.2. Expected nature of osciliatory activity. Let us as-
sume that oscillatory activity underlies the representation
of dynamic bindings during reflexive reasoning. What
sort of activity should we then expect to find in the brain
during an episode of reasoning? The answer would vary
dramatically depending upon our expectations about the
nature of representations used by the brain. It is crucial
that we recognize this, because not doing so may lead to
erroneous expectations about the nature of oscillatory
activity in the brain, and in turn, to wrong interpretations
of raw data. We address this question in the context of
periodic activity but our remarks also apply to aperiodic
activity.

If one believes in fully distributed representations and
assumes that entities are represented as patterns of activ-
ity over large populations of cells, one would expect a
large number of cells to participate in oscillatory activity
during an episode of reflexive reasoning. On the other
hand, if one believes in more compact representations of
the type adopted in SHRUTI, one should only expect a
relatively small number of cells to participate in oscilla-
tory activity.

Now consider Freeman’s observation (para. 3) that
periodically firing cells form a small tail in a distribution of
firing rates and that a majority of cells yield a pulse
interval that is more Poisson than periodic. What one
concludes from the data would depend on one’s assump-
tions about the nature of representations. Someone who
believes in distributed representation would be com-
pelled to conclude that oscillatory activity does not under-
lie the representation of dynamic bindings, but someone
who believes in more compact representations would find
good evidence for the hypothesis that oscillatory activity
underlies dvnamic bindings; because only a very small
fraction of cells would be involved in oscillatory activity at
any time, the small tail constitutes just the right evidence!

R1.2.1. The nature of oscillations predicted by surut. L.ct
us consider a thought experiment to illustrate the nature
of oscillatory activity entailed by a sururi-like system.
Assume that the svstem is in a “quiescent” state. namely.
it is not receiving anv stimulus and is not engaged in any
svstematic thought. At this time the nodes in the system
would be firing with some background rate, perhaps
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Poisson. Now assume that the dynamic fact “John bought
a Rolls Royce” is injected into the system. We would
expect two resultant trains of oscillatory activity to propa-
gate in the system. One would originate at the John and
buyer clusters and rapidly expand to include other clus-
ters representing owner, person, wealthy, and so on. A
second train of activity would originate at the Rolls-Rovee
and buy-object clusters and expand to include other
clusters such as car and own-object. This oscillatory activ-
ity might last only a few milliseconds, after which the
synchronization would probably break down. The active
nodes may, however, continue to fire at a high rate for
some time before reverting to the background rate of
firing.

The model posits that arguments and focal nodes of
concepts are encoded by small clusters of cells. Even if
the reflexive reasoning following an input results in the
activation of several hundred relations (predicates) and
types/features, the total number of nodes engaged in
synchronous activity during an episode of reasoning may
remain small -~ perhaps about 105 cells. Furthermore, this
activity would be distributed across the area(s) where
conceptual knowledge is represented. This estimate is
extremely crude and speculative and may be off by an
order of magnitude, but it still conveys the essential point:
A very small fraction of cells (perhaps as few as one in
about a hundred thousand) may be involved in svn-
chronous activity during an cpisode of reasoning (this
already assumes that we are focusing on some appropriate
1-10% of the brain where we expect conceptual knowl-
edge to be represented).

R1.2.2. A fully developed suruti-like system will have
complex dynamics. Consider a fully developed sHruTI-
like system incorporating the functionality outlined in
sections 10.1-10.4. The extended system would be capa-
ble of responding to continuous stimuli and of shifting its
focus of attention. The dynamics of such a system would
be far more complex than the simple oscillatory patterns
depicted in the examples shown in the target article. The
frequency of its oscillations would vary constantly be-
cause frequency increases whenever entities “leave” the
WMRR and decreases whenever other entities “enter.”
Different modules in the system would be firing at differ-
ent frequencies and each would have its own phase distri-
bution. It is not at all surprising that the oscillatory
activity observed in the brain is far more complex than the
activity portrayed in the target article! We had noted this
in section 7.1.

R1.2.3. Chaos and oscillations. An alternative. much
more complex description of neural activity based on the
notion of chaotic oscillations is offered by Tsuda. The
relation between his characterization and SHRUTI needs
to be examined further, but it appears that Tsuda may be
underestimating the degree of svstematicity required for
supporting reasoning of the sort we discuss in the target
article. The dynamics he deseribes seem more apt for a
system that is not engaged in svstematic reasoning result-
ing from a specific stimulus. and the activity of a sHrueT-
like svstem in a disengaged state could well be chaotic.
but we think the activity of the appropriate subset of
nodes would have to get organized rapidlv onee the
svstem engages in svstemalic reasoning,




R1.3. Dynamic bindings and neural communication. Sec-
tion 3 of Eckhorn’s commentary suggests that he may not
realize how much information must be transmitted to
communicate dynamic bindings during reflexive reason-
ing. In discussing the limited ability of a neuron to
transmit symbolic information we had estimated the
amount of information transmitted in 15 msec to be about
2 bits (see Note 4). This was based on the assumption that
the firing rate typically varies between 1-200 spikes/sec.
Eckhorn, however, argues that the maximum rate of firing
can be as high as 300 bit/sec, and that if we assume a 20
msec cycle time, the amount of information transmitted
by a neuron can be as high as 8 bits. Unfortunately, this
does not change the situation one bit! Neither 2 nor 8 bits
are sufficient for solving the dynamic binding problem
during reflexive reasoning. The number of bits a neuron
would need to transmit to communicate the identity of an
argument filler will be more than 20. Contrary to what
Eckhorn seems to imply, the number of distinct entities
that may fill arguments in dynamic bindings is not 500 but
closer to 100,000.4 This means that even if we were to
assume perfect coding and noiseless communication we
would require 20 bits to communicate the identity of each
filler.

Eckhorn also suggests that the neuronal limitations in
communicating symbolic information may be overcome
by using clusters of neurons rather than single ones. In
section 9.4 of the target article, we discuss such a possi-
bility and point out the advantages of using the temporal
synchrony approach.

In paragraph 5 of his commentary, Thorpe suggests
there is a tension between the fact that SHRUTI takes
several cycles of synchronous activity to compute a re-
sponse and other evidence suggesting that neurons re-
spond within just one or two spikes (cycles). He scems to
be overlooking the fact that an episode of reasoning takes
several cycles of synchronous activity because it involves
the propagation of synchronous activity over several
layers of cells — as many layers as the length of the chain of
reasoning. The propagation of activity across each layer,
however, only takes 1-2 cycles (spikes). This is exactly
what one would expect in view of Thorpe’s discussion in
his commentary (paras. 3, 4).

R1.4. Complexity of node types and circuits. Several
commentators (Dawson & Berkeley, Diederich, and
Garson) suggest that the node types used in SHRUTI are
not biologically plausible. The behavior of p-btu nodes is
eminently plausible and if Abeles (1982) is right about the
significance of synchronous activity and synfire chains, it
can even be argued that a p-btu node with an appro-
priately high threshold is a reasonable idealization of a
neuron. The other two types of nodes, namely, the 1-and
and 7-or nodes, are best viewed functionally as simple
circuits made up of a small number of cells.

Cottrell, Dawson & Berkeley, Diederich, Garson,
Koerner, and Touretzky & Fahlman remark that some of
the circuits used in sHRuUTI, particularly the multiple
instantiation switch networks, are too complex and spe-
cific to be biologically plausible. First, the switches de-
seribed in the target article are intended to demonstrate
that it is possible to achieve the desired control and
functionality by cirenits made up of p-btu. 1-and, and 7-or
nodes. These cirenits amply demonstrate this possibility.
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Second, we agree that these circuits are quite specific and
complex. To put things in perspective, however, we would
like to point out that the concern about the circuits’ being
too specific and complex to be biologically plausible is
misplaced and stems in part from the tacit assumption
that these circuits have to be learned by an agent. There is
no reason, however, to assume that such circuits — or,
rather, circuits that are functionally equivalent to these -
are learned developmentally. 1t is enough to assume that
they have been “designed” by a process that operates at
the evolutionary scale. Surely evolutionary processes are
capable of crafting something as simple as the circuit in
Figure 22. To think otherwise amounts to ignoring the
intricacy, specificity, and complexity of the brain, not to
mention the human body. Note that the internal circuitry
of each switch is the same, so the same circuitry can be
replicated over and over again. Learning need only in-
volve connecting the input and output “wires” of preexist-
ing switches to the input and output wires of concept
clusters.

On a different note, Strong suggests that the design of a
concept cluster may be simplified if the periodicity re-
quirement is relaxed. This proposal is interesting because
it allows the potential of sharing nodes and seems to be
capable of self-induced phase separation. Although we
can see how the proposed alternative allows multiple
instances of a concept to be represented, it is not clear
how it solves the difficult technical problem of communi-
cation between two concept clusters. It would be instruc-
tive to generalize the proposal to encode n-ary predicates
so that several predicate instantiations may be repre-
sented without cross-talk. It would also be interesting to
see how the arguments of antecedent and consequent
predicates can be linked to ensure that bindings pertain-
ing to several instantiations may propagate without cross-

talk.

R1.5. Timing estimates. It is argued by Garson and by
Hirst & Wu that the nodes in SHRUT! do not correspond to
actual neurons and that it is therefore inappropriate to
conclude anything about the actual time course of reflex-
ive processing based on an analysis of our model. The
timing data we present in section 8.1.1 are meant to be a
broad indicator of reasoning times and their main purpose
is to demonstrate that reflexive reasoning can be per-
formed within a few hundred milliseconds by a system of
simple and slow computing elements. Note that the basis
of our estimates is the time it takes synchronous activity to
propagate from one cluster of cells to another. Our esti-
mates are therefore not too sensitive to actual encoding
details as long as the number of layers in an alternative
implementation of the switches and clusters is compara-
ble to the number of layers in our implementation.

R1.6. Restriction on the number of entities. Our estimates
of the maximum number of different entities that can be
referenced in the WMRR are challenged by Koerner. He
argues that we should not use data about the periodicity of
oscillations of cells involved in early visual processing to
make inferences about complex psychological processes,
citing his own interpretation of the 7 = 2 limit based on
the much slower 0 activity.

Our estimates apply to first-order bindings. those for
which argument fillers are entities and not dynamic
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relational structures (an entity may be a complex rela-
tional structure as long as it is a static one). We believe that
reflexive reasoning primarily involves first-order bind-
ings; for such bindings, the appropriate interpretation of
7 is the cycle time of relatively small cell-clusters partici-
pating in synchronous activity (periodic or aperiodic).
This interpretation of w would, we believe, apply to first-
order bindings involved in reflexive reasoning as well as
vision, modulo variations in the characteristics of differ-
ent cell types.

A possible reason for Koerner’s objection may be that
he is referring to higher-order relational structures such
as patterns of activity corresponding to complete solutions
and hypotheses, in which fillers themselves can be dy-
namic relational structures. If, as Koerner suggests, tem-
poral synchrony is used to prevent cross-talk among such
complex and large dynamic structures, the associated
temporal activity is likely to have a much larger cycle time
and hence a much higher value of =.

R1.7. “Local” representations and biological plausibility.
It is suggested by Touretzky & Fahlman (paras. 5, 6) and
by Hirst & Wu that SHRUTI is not biologically plausible
because it uses localist representations! The representa-
tion of a predicate in SHRUTI is not a single node; a cluster
is n + 2 nodes (n role nodes and 2 7-and nodes). As
Hummel & Holyoak point out, this means that our repre-
sentation of a predicate instance is a distributed pattern
{though not in a holographic sense). In addition, each
argument node maps to several cells that may be physi-
cally distributed. So our model makes use of a physically
“distributed” representation even though the representa-
tion of an argument is conceptually “localist.” In view of
the above, it is not clear which biological axiom Touretzky
& Fahlman and Hirst & Wu think we are violating. If they
are suggesting that our model does not adhere to the
holographic version of distributed representation then we
refer them to Hummel & Holyoak's commentary and
section R3.1, where it is argued that such representations
cannot support systematicity and knowledge-level
parallelism.

R1.8. Are brain mechanisms totally distinct across modal-
ities? “Whether or not the brain makes use of temporal
synchrony in object perception has no bearing on how we
reason abstractly,” writes Sloman (para. 2, empbhasis
added). Diederich (para. 8) expresses a similar concern
(though in a milder form). We think Sloman’s stand is an
extreme one. There are good reasons to suspect that the
mechanisms developed for perceptual and motor process-
ing were coopted by the brain to solve other cognitive
problems.

R1.9. Central control and surumi. Doubts are expressed by
Koerner about our view that the reflexive-reasoning pro-
cess can run without a central controller. He suggests that
central control will be required during reasoning and
decision making. He envisions such a controller guiding
the activity into a “globally consistent” state and “focus-
ing” the “scarch” toward additional support for the chosen
hypothesis. We welcome his comments and pointers to
his work on related problems, but we think they pertain
more to reflective, than reflexive. processing. Notice that
what he describes seems like deliberative reasoning and
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decision making where the system must choose one of
several competing hypotheses, find a globally consistent
state, and carry out focused search for support. This is
exactly the sort of processing we have described as reflec-
tive (see sect. 1). It is quite likely that such reflective
reasoning requires highly controlled and focused activity
driven by an attentional mechanism (see sect. 8.2.2).5

Note also that the view of representation and process-
ing put forth by Koerner relies much more on finely
structured temporal activity than on the kind envisioned
in SHRUTI (even in its extended form). One of the features
of SHRUTTI is that it uses a great deal of spatial structure to
reduce its dependence on the fine-grained structure of
temporal activity. It is possible that a greater dependence
on fine-grained temporal structure has led Koerner to the
conclusion that central control is necessary for controlling
the temporal aspects of activity.

Dawson & Berkeley (para. 2) and Touretzky & Fahl-
man (paras. 8-10) confuse an “interface” with a “central
controller,” accordingly arguing that our system already
has a (hidden) controller! We respond to this in section
R5.3.

R1.10. Some imaginative arguments against the biolog-
ical plausibility of snruTi. Our system is not biologically
plausible Dawson & Berkeley (para. 5) claim, because it
requires an “external learn signal” to trigger the learning
of a fact. Their observation is based on a statement in
section 10.5 about a scheme for storing facts in medium-
term memory. We indicated there that a fact is learned in
the presence of a “learn signal.” Surely it is plausible that
an internally generated signal based on the novelty or
salience of an input allows the one-shot learning of a
situation (fact). Next, Dawson & Berkeley invoke the
biological implausibility of backpropagation to claim that
our system is not biologically plausible. The most imag-
inative objection to the biological plausibility of our sys-
tem, however, is that the limitation of the (logical) infer-
ential power of our system “casts further doubt on its
putative biological plausibility™ To suggest that sHRUTI is
not biologically plausible because it lacks inferential
power seems to miss the point altogether.

R2. Cognitive significance

The commeits about the cognitive significance of SHRUTI
cover a wide range. On the one hand, we have Touretzky
& Fahlman’s sweeping dismissal of our model: on the
other hand, we have Oaksford & Malloch’s enthusiastic
appraisal of it as - “potential landmark in the cognitive
science/psychology of human reasoning™ We think an
objective and careful evaluation of the target article will
help the reader determine which of these is the better
characterization of SHRUTL

The criticism of SHRUTI centers around two themes:
The first concerns the lack of empirical support. The
second concerns incomplete coverage of the reflexive-
reasoning phenomenon.

R2.1. Empirical support and cognitive modeling. V¢
agree that, contrary to standard practice in psychology.
we have not tried to replicate a specific data-set obtained
in a laboratory experiment. We have pursued a very
different approach. focusing on a set of space and time




constraints obtained from some broad but well-grounded
observations about the nature of reflexive reasoning (see
sect. 1.1.1; see also Hampson, Oaksford & Malloch, and
Ohlsson). At the same time, we have also focused on a set
of computational constraints that characterize the archi-
tecture underlying cognition — in particular, its limited
ability to process and communicate symbolic inform:ation
(sect. 1.2). What is described in the tarqet article is (1) a
detailed model that satisfies these two sets ot constraints
and (2) the psychological implications of the model.

In suggesting that our model is rich in assumptions
Sloman may be missing the significance of these computa-
tiona' and architectural constraints and labeling them as
mere assumptions. We sympathize with him for this
confusion. As Qaksford & Malloch point out (para. 3), our
approach is not very common in cognitive psychology,é
where issues of computational effectiveness and sca-
lability are often secondary and the emphasis is on build-
ing empirically adequate models that fit some well-
circumscribed body of data.

R2.1.1. swRum and predictions. In addition to satisfying
the general set of constraints on space-time resources and
information processing abilities of nodes and links,
SHRUTI also leads to several specific and testable predic-
tions about the nature of reflexive reasoning. A number of
psychologists have remarked on the significance of these
predictions (see Diederich, Hampson, Hummel & Holy-
oak, Oaksford & Malloch, and Ohlsson). As described in
section 8, SHRUTI predicts the capacity of the working
memory underlying reflexive reasoning (WMRR) and the
form of rules that can participate in such reasoning.
SHRUTI also predicts that the maximum depth of deriva-
tions during systematic reasoning will be shallower than
that of associative priming (sect. 8.2.6).

Oddly enough, Slomun a:d Touretzky & Fahlman
discount all these predictions. Inexplicably, Sloman dis-
misses the predictions concerning the capacity of WMRR
in suggesting that Baddeley’s work “already accounts for
working memory data”! Yet the target article explicitly
states that the WMRR is the functional description of the
dynamic activity of the LTKB and is quite distinct from
the notion of working memory studied by Baddeley (see
sect. 8.2.2). We would like to stress that our predictions
about the capacity of WMRR are not only potentially
important for reflexive reasoning, but they may also lead
to insights into other reflexive phenomena as well (e.g.,
see Henderson's [1992] work on parsing).

Sloman also describes the restrictions on the form of
rules identified in section 8.2.5 as “rather arbitrary” and
“unlikely to be useful.” He overlooks the discussion in
section 4.9, where we suggested why the constraint may
have a fundamental computational basis. Since the writ-
ing of the target article we have a proof that the constraint
on the form of rules is an essential one for reflexive
processing (Dietz et al. 1993). In other words, reasoning
involving rules that violate the constraint in question
cannot be carried out using space that is only linear in the
size of LTKB and time that is independent of the size of
LTKB.

Sloman goes on to argue that our predictions about the
limitations on the use of transitivity are also wrong. His
counterexample seems to be based on a misunderstand-
ing of the issue at hand. It does not establish that people
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can compute transitivity with ease; it simply demon-
strates the rather obvious fact that people are good at
identifying certain linear orderings - in this case the natu-
ral ordering of integers! Note that an agent can determine
whether Pimplier(i,j) simply by noting whether or not i is
less than jf

Surely Sloman must realize that his example does not
provide an appropriate test of the prediction. Consider
the following “experimental data™: After being shown the
sequence Foo,, Foo,, . . . , Foosq, subjects were able to
recall correctly all the 37 items in the sequence, further-
more, they were also able to recall the exact order in
which the items were presented. Would Sloman conclude
fromn this that our memory span is 37 and that there is no
recency effect?

As for explaining human fallacies, the model makes a
number of predictions about when people might provide
no answer or a wrong one. The constraints on the form of
rules, the capacity of WMRR, and the depth of reasoning
all point to the numerous ways in which huiaan reflexive
reasoning is fallible. We are also aware that we have not
modeled all sources of error and all factors that lead to
nonprescriptive behavior (e.g., see sect. 5, para. 2). The
phenomenon that Sloman refers to, namely, the graded
nature of category inclusion, is the type of phenomenon
that is relatively easy to model in a connectionist network
using weighted links, so we are not surprised that Sloman
has a “simple model” that mimics this specific effect.

Touretzky & Fahlman set up a false contrast when they
cite the work of Collins and Michalski (1989) in evaluating
the significance of our work. The two efforts are motivated
by very different concerns and goals. Collins and Mi-
chalski’s work is clearly significant, but it does not address
the problem of reflexive reasoning, computational effec-
tiveness, or biological plausibility.

We do agree with Sloman that it would be nice to see
how our model could comprehend a simple story. We also
agree with Ohlsson that the results of the model rced to
be integrated with exicting psychological theories and
with Martin that it is important to identify the relevant
empirical data that would serve to corroborate the reflex-
ive/reflective distinction suggested by sHRuUT1. Qaksford
& Malloch (para. 7) point to experimental results that
provide corroborative data about the reflexive/reflective
distinction. We hope other cognitive psychologists will
also contribute in this regard. In this context we would
like to add that the validation of the constraints proposed
by the model need not come from the area of reasoning
alone. They may also be validated by examining their
implications for parsing, another reflexive phenomenon,
and one for which there exist extensive empirical data.
Henderson’s (1992) work on parsing, using a SHRUTI-like
madel, is beginning to show that such restrictions help
explain some of the limitations of human parsing by
modeling certain garden path phenomena and people’s
limited ability to deal with center-embedding.

R2.2. Questions about coverage: Red herrings and real
issues. Several commentaries raise the issue of coverage,
pointing out that sHrUTI does not model every type of
reflexive-reasoning behavior. These include several in-
sightful remarks by Barnden and Hummel & Holyoak
and valid observations about the lack of a treatment of
negation by Cottrell and Garson. Munsat and Bauer
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seem to have arrived at a4 genuine misconception about
the reasoning ability of a sHRUTI-like system, whereas
Touretzky & Fahlman first caricature our model and then
dismiss it as uninteresting!

R2.2.1. Logic, deduction and swrun. According to Tou-
retzky & Fahlman, our model is simpl; a limited theorem
prover. They dismiss our work based on this claim,
arguing that because human reasoning is not purely
deductive, SHRUTI cannot be a credible model of it.
Sound argument, but the premise is unfortunately false.

Hirst & Wu state that not all reasoning is deductive,
enumerating five problems they (rightly) claim require
nondeductive reasoning. We agree (see Ajjanagadde
1991; Shastri 1988a; 1988b).

Let us reiterate the basic technical problem we have
solved: We have extended the representational adequacy
and inferential power of neurally plausible models by
demonstrating how connectionist networks can (1) repre-
sent relational structures in a dynamic manner and (2)
propagate such structures efficiently and systematically in
accordance with “rules.” Note that the essential charac-
teristic of a rule is that it specifies a systematic mapping
between the roles of relaticnal structures. As pointed out
in the target article (1) these relational structures can be
viewed as schemas or frames, hence rules may be thought
of as mappings between schemas or frames, and (2) the
rules (mappings) can be “deductive” or “evidential,” in
particular, they may be sensitive to the type/features of
the role fillers in a given situation.

The representational significance of the mechanisms
developed in sHRUTI extends beyond deductive reason-
ing; the ability to represent and systematically propagate
relational structures dynamically lies at the core of not
just deduction but also evidential, abductive, and analogi-
cal reasoning. We discussed this in section 3.5 and at
several places in the target article, pointing out the
broader representational significance of being able to deal
with predicates, variables, rules, and dynamic bindings
(see, e.g., sect. 1.3, last para.; sect. 2.5; sect. 10, para. 1).

In section 2 we made what we believe is an important
distinction between systematicity and appropriateness
that helps distinguish the problem of representing and
propagating relational structures from the issue of the
strength of such a propagation. In section 5 we showed
how these two factors could be integrated by making the
propagation of bindings from one structure to another
sensitive to the types/features of the fillers in the source
structure. The idea that the strength of a rule firing can be
defined as a function of the types of argument fillers is an
important one and does more than “lend a little more
{flexibility to] modus ponens.”

It is true that we carried out a detailed treatment of
deductive reasoning only in the target article. We did this
to investigate fully the strengths and weaknesses of the
temporal synchrony approach as a mechanism for repre-
senting and svstematically propagating relational struc-
tures. Note, however, that the predictions about WMRR
capacity and the restriction on the form of rules would
apply not onl  to deductive reasoning but also to eviden-
tial, abductive, and analogical reasoning. This should
further convinee the reader of the methodological signifi-
cance of separating the issues of svstematicity and appro-
priatenes: Unlike louretzky & Fahlnan and Hirst &
152
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Wu, several other commentators (Barnden, Feldman,
Hampson, Martin, Qaksford & Malloch, Ohlsson, Palm,
and Strong) apparently had no difficulty sceing the
broader significance of our model.

R2.2.2. Reflexive reasoning is limited reasoning. Not only
do Dawson & Berkeley seem not to have understood what
ou. work is about (they think that it is only relevant for
deduction), but they also criticize it for not being as
powerful as a full-blown theorem prover. Restating the
censtraints we identified on the capacity of WMRR and
the form of rules, they write that “although these two
limitations are acknowledged,” we have failed to note “the
full extent of the problems they produce.” Dawson &
Berkeley don't realize that we consider the identification
of these “limitations” a major contribution of our work in
that it helps delineate reflexive reasoning from reflective
reasoning.

R2.3. Plausible and possible inference. We agree with
Bauer that a reflexive reasoning system should be able to
separate plausible infcrences from the vast set of possible
inferences and that a “model” should be capable of repre-
senting implicit information that can be mad~ explicit if
and when the need arises. Bauer seems to have the
incorrect belief, however, that snrur lacks these attri-
butes. This may stem from wrongly assuming that (I}
SHRUTI only encodes plausible inferences in the t.TXB,
and (2) everything SHRUT! infers has to be explicitly
represented in it

Possible inferences. Consider the case of forward (pre-
dictive) reasoning. Given an input, the set of inferences
that SHRUTI can draw using its LTKB corresponds to the
set of possible inferences. In the purely deductive case,
this set consists of the inferences that can be derived by
the repeated application of modus ponens to the rules in
the LTKB plus the input, without exceeding the capacity
limitations of WMRR and the bound on the length of
individual derivations.? Notice that there is a clear dis-
tinction between (1) the set of all possible deductions that
SHRUTI can compute from its LTKB plus the input, and (2)
the set of all logically possible deductions that follow from
the same LTKB plus the input. The former excludes a
large number of valid deductions whose derivations
would cause WMRR capacity to be exceeded or whose
length would exceed the depth bound. Hence sHruTI
provides a natural explanation for why a large class of valid
deductions cannot be made.

Plausible inferences. The possible inferences drawn by
sHRUTI will soon decay because of a dispersion of syn-
chronous activity unless they are reinforced by subse-
quent inferences (see sect. 8.5). Note that inferences that
reinforce each other are the ones that produce the same
dvnamic bindings. This mcans that in a system based on
temporal synchrony, inferences that reinforce one an-
other produce coherent activity (literally) and therefore
survive long cnough to affect other processing or get
stored in medium-term memory. Thus plausible infer-
ences correspond to inferences that are reinforced by
other inferences or inputs and therctore survive, Tmplan-
sible inferences are the ones that stand alone. and henee.
soon decav. sSHRUTI predicts that atter each mput. all
possible inferences get dreawn Lut onhv the plansible ones
SUIVIVe.




Consider an extended system encoding evidential rules
and the ability to combine forward and backward reason-
ing, in other words, a system capable of abductive reason-
ing. Now consider the input “John bought a book™ fol-
lowed by “It is Susan’s birthday.” The input “John bought a
book” will lead to a number of possible inferences. These
might include, among other things: “John wants to read
the book” and “John wants to give the book to someone.”
The input "It is Susan’s birthday” will likewise lead to
number of possible inferences. Some of these will rein-
force the inferences from the previous input. In particu-
lar, some of the inferences triggered by “It is Susan’s
birthday” will reinforce the prior inference “John wants to
give the book to someone” and also provide the binding
“Susan” for the recipient role. Thus, the inference “John
wanted to give the book to Susan” may emerge as the
coherent (plausible) inference and survive, whereas the
inferences “John wants to read the book” may decay.

Another apparent misconception of Bauer’s is that
SHRUTI can only infer something that is represented
explicitly in LTKB! This is not the case. SHRUTI is capable
of performing inference, which means that it can make
explicit things that are only implicit in the LTKB or the
input. For example, if the system is told “Harry bought a
Rolls-Royce” it infers “Harry owns a car” and thereby
makes explicit something that was only implicit in the
input.

The example Bauer gives (about driving to the store)
can easily be accounted for in the system described in the
target article. Bauer’s example simply illustrates that one
of the “rules” in the LTKB should embody the following
commonsense knowledge:

If an agent goes from a source s to adestination d during a time
interval [t,,1,], then for any location [ on the path from s to d
there exists a time ¢ in the interval {¢,,£,] such that the agent will
be at [ at time ¢.

A little pause will convince the reader that the knowl-
edge expressed above would be part of our common
sense. The LTKB can also be assumed to include other
pieces of common sense such as “driving from a to b
implies going from a to b” and “the distance from the
source to a point along the path is a fraction of the total
path distance.” If the LTKB contains such commonsense
knowledge, then given “John drove from his home to the
store,” a SHRUTI-like system will be able to answer all the
queries of the form, “Did John drive a third of the distance
between his home and the store?”

R2.4. svrum and the LTKB assumption. Like Bauer, Mun-
sat also expects the right sort of behavior from a reflexive
reasoner. He feels that neither SHRUTI nor any other
system based on the LTKB-assumption (see Munsat) can
embody reflexive-reasoning ability. We think this is too
pessimistic and that an extended sHruTI-like system
would be capable of performing the sort of reasoning
described by Munsat. His misgivings arise partly from the
same set of misunderstandings that led Bauer to conclude
that (1) evervthing inferred by siruTt has to be repre-
sented explicitly in the LTKB, and (2) there is no distine-
tion between possible and plausible inference.

It is surprising that Munsat wonders how the right rules
and facts become active from among the mitlions of rules
and facts. becanse this is one of the core problems sirurt
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addresses! Perhaps Munsat wrongly thinks the LTKB is
an unstructured set of propositions. 1f the LTKB were an
unstructured set of propositions, Munsat’s concerns
would certainly be appropriate. In SHRUTI, however, the
rules in the LTKB are highly organized and form an
inferential dependency graph in which they are direct
(hardwired) mappings from predicates to predicates and
provide the necessary inferential paths for the automatic
and efficient computation of inferences. In the case of an
input, these hardwired mappings lead to all and only the
possible inferences that follow from the input. For exam-
ple, the input “Sally bought a Rolls-Royce” would physi-
cally cause the activity “Sally owns a car” but not “the
moon is a satellite.”

Munsat also worries about the need for a homunculus
to decide what makes sense. One of the appeals of
connectionist models is that they offer an alternative
interpretation of what it means to “make sense.” These
include (related) notions such as reaching a locally mini-
mum energy state, being in an attractor state, or forminga
stable coalition. These are related notions, and in the
context of reasoning they correspond to activity states
where, for example, the cause-and-effect relations be-
tween active predicates are mutually reinforcing.

Munsat rightly observes that people can tell you what
would have to be the case for a story line to make sense.
But isn’t this exactly what abductive reasoning captures?
So given “John slipped on the floor,” an abductive rea-
soner might come up with the hypothesis “the floor might
have been wet,” and “someone might have mopped the
floor.” Of course, the LTKB would have to include the
commonsense knowledge that the floor’s being wet can
lead to someone slipping and falling, and that mopping
the floor causes it to be wet. But this is exactly the sort of
commonsense knowledge we would expect to be in the
LTKB of an agent.

About the joke from “Cheers.” We believe that a rea-
sonable modeling of the LTKB of an agent exposed to
popular TV fare would allow the modeling of the joke in
question. We do not think our ability to understand such
jokes implies anything magical about the contents of our
LTKB or our reasoning ability — at least not in any way
that transcends our already remarkable ability to perform
reflexive reasoning.

Garson rightly points out that it would be unrealistic to
assume each predicate to have all the arguments required
for accommodating the potentially large number of mod-
ifiers that might arise in various situations. The problem
can be solved as follows: Predicates are assumed to “in-
herit” arguments in much the way that concepts inherit
attribute values. For example, arguments such as location
and time-of-occurrence may be associated with the gen-
eral predicate event and not replicated in predicates
corresponding to more specific tvpes of events such as
sell. When the sell predicate is instantiated. the appropri-
ate rule (the one that encodes: “sell is an event”) will lead
to an instantiation of the predicate event. Once event is
active, its arguments location and time-of-occurrence
would become available and may be bound to the value of
location or time-of-occurrence provided by modifiers.

R2.5. Some real limitations. Scveral commentators have
pointed out some real limitations in the expressive power
of sHRUTE vis-a-vis reflexive reasoning. Although some of
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these can be readily overcome, others would require
significant effort.

Cottrell (para. 4) and Garson point out that the target
article does not deal with negation. The abductive reason-
ing system described in Ajjanagadde (1991) suggests one
way of handling it. Cottrell points out another promising
alternative. Referring to some of his earlier work, Cottrell
cautions us that the introduction of negation might slow
down some of the computations. The difficulties Cottrell
refers to, however, were partially due to his use of default
logic (Reiter 1980) as a framework for modeling inheri-
tance with exceptions. We have argued elsewhere (Shastri
1988a) that default logic is not the appropriate tool for
modeling what is essentially a problem of evidential/
probabilistic reasoning. We have also shown that an evi-
dential treatment of this problem leads to a connectionist
network that can compute inheritance with exceptions
effectively in time that is just proportional to the depth of
the inheritance hierarchy. The inclusion of negation
would support the encoding of rules such as A(x) = — B(x)
and would in turn allow the system to draw inferences of
the type “John is not taller than himself.”

Barnden (para. 8), Hummel & Holyoak (para. 3), and
Garson (para. 7) point to an important restriction on the
representation of dynamic structures in SHRUTI. SHRUTI
can only represent dynamic structures containing first-
order bindings — namely, the fillers of arguments in a
dynamic structure must be entities; they cannot them-
selves be dynamic structures. Note, however, that an
entity can be a complex structure as long as this structure
is static, that is, built out of hardwired nodes and links.

A possible way of expressing higher-order bindings is to
use a richer temporal structure than the one used in
SHRUTI. In such a scheme, first-order bindings would be
represented by very fine synchronization using short
cycle times and narrow windows of synchrony, while
higher-order bindings would be represented by coarse
synchronization using long cycle times and wider win-
dows of synchrony. Keerner seems to be advocating such
a multilevel temporal representation. The problem with
this approach, however, is that it can lead to complex and
potentially unstable activity (see Koerner).

We believe that reflexive reasoning primarily involves
first-order bindings and many problems that seem to
require higher-order bindings can be reformulated so as
to require only first-order bindings. For example, con-
sider the representation of the nested structure: go( John,
path(at(home))), which may be read as “John went on a
path that led to his home.” A dynamic representation of
this structure might appear to require a third-order bind-
ing for the second argument of go. Such a nested struc-
ture, however, can be expressed as a dynamic structure
involving only first-order bindings by assuming that an
instantiation of go creates a flat dynamic structure via the
“rule”:

V x:thing, y:thing go(x,y) > 3 p:path, llocation
go'(x.p) N\ to'(pl) /N at'(Ly)®

which says that go(x,y) means that there exists a path p
and alocation I, such that lis “at y,” p is the path to [, and x
goes on p. (Additional rules involving the predicates go’.
to’, and at’ would specifv the meanings of the predicates
go'. to', and at'.)

In the target article we had conjectured that our ability
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to incorporate novel, rulelike intormation during reflea-
ive reasoning may be extremely limited ¥ Althougl Barn-
den does not reject this claim outright, he expresses some
doubts and offers a counterexample. But Barnden's is not
necessarily a counterexample. As stated in section 5,
paragraph 7, the use of tyvpes allows certain rulelike
information to be expressed as a “fact.” Specifically, if the
“rule” involves only unary predicates in the antecedent
then it can be expressed as a fact. Thus, instead of
expressing “Everyone at the party was a toothbrush sales-
person” as a rule Vx at-party(x) > sells(x, Toothlrush)
one could express it as sells(at-party, Toothhrush), where
at-party just refers to the set of people who were at a
particular party. Barnden’s example, however, does high-
light that a reflexive reasoner should be capable of refer-
ring to dynamic “sets” such as “the people at a specific
party.”

R2.6. Relation between reflexive and reflective reasoning.
Several questions are posed by Ohlsson and Martin
concerning the relation between reflexive and reflective
reasoning; some answers are provided by Oaksford &
Malloch and Hampson.

Shift from reflective to reflexive. As suggested in the
target article, rules that participate in reflexive reasoning
must be integrated into the LTKB by being embedded in
the inferential dependency graph. This integration is
expected to be a slow process requiring repeated experi-
ence or observation. Hampson (para. 2) offers some sup-
porting evidence and points out that this is consistent with
the general view that practice shifts processing in the
direction of automaticity (also sce Strong). However,
SHRUTI also predicts that rules whose form violates the
restriction stated in section 4.9 cannot become part of a
reflexive process.

Reflexive and reflective reasoning are not disjoint pro-
cesses that use disjoint representations and mechanisms.
We think that reflexive reasoning is our primary and basic
reasoning mechanism. Reflective reasoning involves a
combination of reflexive reasoning and additional mecha-
nisms and representations. These would include an atten-
tional mechanism for “remembering” a small number of
input or inferred facts temporarily. 19 In other words, we
will require an overt-STM that might very well corre-
spond to the usual notion of a working memory (Baddeley
1986).

Ohlsson wonders why agents use reflective reasoning if
reflexive reasoning is so efficient. The answer is quite
straightforward: Agents resort to reflective reasoning be-
cause they must. If the amount of dynamic memory
required for solving a problem exceeds the WMRR capac-
ity, if the depth of reasoning required to solve a problem
exceeds the depth bound of reflexive reasoning, or if the
form of rules required for reasoning violates the form
constraint, the agent will have to resort to reflective
reasoning and use conscious deliberation, props, and/or
other external representations (see Oaksford & Malloch,
paras. 6-7).

R3. Paradigmatic issues

R3.1. Distributed representations: The magical alterna-
tive. The magical powers of distributed representations
are invoked by Garson to suggest that our work is iis-
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directed. Yet none of the existing models based on distrib-
uted representations come anywhere close to demon-
strating the expressiveness, inferential adequacy, and
scalability of sHrRuUTI. We hope that the proponents of
distributed representations will recognize that a distrib-
uted system — at least in its pristine form — cannot have
the necessary combination of expressiveness, inferential
adequacy, and scalability. As Hummel & Holyoak point
out, there is a basic tradeoff between distributed repre-
sentation, systematicity, and parallelism; no amount of
handwaving can make this tradeoff disappear.

A system using a distributed representation for argu-
ments and fillers can only represent one dynamic binding
at a time. How does Garson expect such a system to
perform rapid reasoning (or parsing) within the desired
time scale? It should not come as a surprise that bcps and
TPPS, two systems based on distributed representations,
were serial at the .nowledge level and could only apply
one rule at a time.

Rohwer recognizes the advantage of using temporal
synchrony, suggesting that to utilize space in an optimal
manner one should use temporal synchrony in combina-
tion with distributed representation. But by using only
temporal synchrony and interleaved node activity, a dis-
tributed representation system can only represent a small
number of dynamic bindings. Hence the “optimal” use of
space will mean giving up the ability to represent a
large number of dynamic bindings simultaneously and
knowledge-level parallelism.

As Hummel & Holyoak point out, SHRUTI also uses
“distributed representations.” An n-ary predicate is rep-
resented by a collection of n + 2 nodes and hence a
dynamic fact is a pattern of activity distributed over
several nodes. SHRUTI does use a localist representation
of arguments (note, however, that although each role is
localized in the abstract representation, it is physically
distributed, because it is represented by a cluster of cells).
The (abstract) localization of roles is essential in any
system that must represent a large number of dynamic
bindings simultaneously. Indeed, it is their localization
that enables SHRUTI to represent and propagate simul-
taneously a large number of dynamic bindings and to
exhibit knowledge-level parallelism.

As far as entities are concerned, the encoding of an
entity can be viewed as a distributed pattern over the
collection of nodes that make up the type hierarchy. If one
augments the representation of types (concepts) with
attribute values (see Shastri 1988a; Shastri & Feldman
1986) then the “distributed” nature of the rep.-sentation
of each entity becomes even more apparent. Observe that
the key to encoding similarity is the use of shared repre-
sentation and it is this sharing that gives distributed
representations the ability to capture similarity. The type
hierarchy also leads to such a sharing of representation
and, hence, allows SHRUTI to capture similarity.

We agree with Dorffner that a reflexive-reasoning
system should have a more fluid and dynamic view of
compositionality. It should be capable of zooming in and
out over representations effortlessly at different levels of
granularity and of interpreting a situation/input relative
to its current goals (re: Dorflner’s example of our inter-
pretation shifting from “a blob. " “aladder,” to “a chair on a
table™). But we fail to see what this ability has to do with
distributed representations per se. Dorfiner also advo-
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cates a flexible interpretation of roles. In a sense, SHRUTI
already exhibits such flexibility. Consider the activity
resulting from the input “John owns a car.” This input will
result in the roles “owner” and “potential-seller” firing in
synchrony with John. One can view this activity over the
role nodes as the distributed pattern corresponding to the
“soft” role being filled by John. Now imagine that there
are certain types of objects, say foo, that can be owned but
not sold. This knowledge would be encoded as the appro-
priate type restriction on the rule between own and can-
sell. Now if we present the input “John owns a foo,” the
resulting activity will only involve the role “owner” firing
in synchrony with John. Thus in this situation, John can
be viewed as filling a different role given by a different
pattern of activity over the role nodes.

Halford offers 2 comparison of the tensor product
approach (TPA) to dynamic bindings and the approach
used in SHRUTI. We welcome the comparison but disagree
with some of the specifics. For example, Halford says that
the TPA representation of R(a,b,c) also represents the
influence of con R(a,b). But even SHRUTI's representation
has a similar ability. Consider the representation of
give(John, Mary, x) and the inferences that would follow
from this partially instantiated relation. Now imagine
introducing the binding (g-obj = a-valentine) in the above
relation instance resulting in give(John, Mary, a-valen-
tine). A number of additional inferences would now fol-
low. Would these additional inferences not denote the
effect of adding “a-valentine” to give(John, Mary, x)?
Halford also suggests that given R(a,b,c), it is meaningful
to talk about R(a,b) in TPA. But does the ability to deal
with partially instantiated relations not confer the same
power on SHRUTI? Finally, Halford indicates that TPA
supports the retrieval of any argument filler given the
predicate and the remaining argument fillers. This seems
to correspond to SHRUTI's ability to answer wh-queries
(see sect. 4.7).

R3.2. swrum and the classical approach. Several commen-
tators see the ghost of classical Al in our model (Dawson &
Berkeley, Dorffner, and Garson). Dawson & Berkeley
also see SHRUTI as a mere implementation of classical
ideas. Our response has two parts. First, we believe that
any model of cognition will have to exhibit some of the
functionality identified by the classical approach. We
cannot simply discard the notions of systematicity and
compositionality — what we need to do instead is discard
the view that systematicity and compositionality have to
be retained in their unconstrained and unfettered form.
The interesting challenge is to determine the appropriate
form and extent of systematicity and compositionality that
cognitive models must support. If we draw the line too far
to the left, we can end up with both a type of associationist
glob that opponents of connectionism love to attack or
models that work on toy examples but do not seem to have
any hope of scaling to larger problems. If we draw the
boundary too far to the right we can end up with attempts
at building “connectionist” machines for doing list pro-
cessing — an interesting exercise, but lacking anv cogni-
tive significance (Touretzky 1990). 11

As Feldman, Ohlsson, Martin, Strong. and Qaksford
& Malloch point out, ours is a different approach. We are
trving to build a modelof reflexive reasoning that respects
the essential constraints imposed by the underlving com-
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putational architecture but that at the same time has (1)
considerable representational and inferential power, (2) a
limited yet potentially adequate ability to deal with sys-
tematicity and compositionality, and (3) requisite scaling
power.

The comment that SHRUTI is a mere implementation of
the classical approach simply misses the point. Ohlsson
(para. 8), Martin (paras. 9-10), and Oaksford & Malloch
(paras. 1-4) spell out the relation between sHRUTI and the
classical approach. The key observation is that our “imple-
mentation” leads to a set of constraints and predictions
about the nature of reflexive processing that are unique to
this implementation.

Dawson & Berkeley offer three reasons why our model
is a classical one. We have already responded to their
comments about biological plausibility in R1.10 and we
will respond to their claim that our system has a central
controller in R5.3. Let us briefly comment on the “squig-
gly line” Dawson & Berkeley point to as the “smoking
gun” that proves our system is a classical rule-based one!
The squiggly line in Figure 19 was drawn to help the
reader delineate the representations introduced in sec-
tions 3-4 from those introduced in section 5. By no stretch
of imagination does this line separate the “data structures
being processed” from “the rules governing system infer-
ences.” Both the type hierarchy and the rule base embody
some data and some processing in the traditional sense of
these terms. We strongly urge Dawson & Berkeley to
reread section 3.4, paragraph 5, and the article by Hat-
field (1991) cited therein.

R3.3. On the Al paradox. Our claim that we have taken a
step toward resolving the Al paradox (see Abstract) is
contested by Hélldobler, yet nothing in his commentary
contradicts the basis for our claim, namely, that work in Al
has not offered a credible account of how humans can
rapidly perform a wide range of reasoning in time that
does not seem to increase with the size of their knowledge
base. The results in AI have either been negative and
shown that even very “simple” types of reasoning are
intractable, or they have offered characterizations of
“complex” reasoning classes that require too much space
or time, or produced positive results that are about overly
restrictive forms of reasoning (see sect. 9 for references).
So if our predictions about reflexive reasoning were to
hold, we would indeed have taken a step toward resolving
the Al paradox by showing that there exists a class of
reasoning that can be performed with requisite efficiency
and that is powerful enough to cover a significant range of
reasoning that people can perform reflexively.

Hélldobler graciously observes that our “logic” has
some remarkable features but he remarks that its expres-
sive power is “fairly limited” from a “logical point of view.”
He does not seem to realize that the fundamental issue is
not how powerful or weak reflexive reasoning is from a
logical point of view. H it turns out that such reasoning
corresponds to a “simple” logic, so be it! Holldobler seems
to want to hold us responsible for Al researchers’ failure to
imvestigate “simpler” logics.

We appreciate Holldobler's pointers to related work on
automated theorem proving. Note. however, that the
result Holldobler discusses involves a stronger restriction
on the form of rules than what we impose in section 4.9,
Our restriction concerns anly variables that ocenr more
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than once in the antecedent. Hélldobler mentions a
stronger restriction that covers all variables occurring in
the antecedent. '

We are not surprised by Holldobler's observation that
as far as deductive reasoning is concerned, SHRUT1's
inferential power is a special case of some more general-
purpose theorem prover. This observation is of some
value, but such a posteriori analysis should not be mis-
taken for the actual identification of an interesting and
significant special case of a general problem.

R3.4. Do static bindings suffice? It is argued by Cooper
that dynamic bindings may not be relevant because rule-
based reasoning may be the wrong paradigm for modeling
intelligence. As pointed out in the target article and
in R2.2, however, the dynamic-binding problem tran-
scends a narrow reading of “rule-based reasoning.”
Cooper refers to case-based reasoning (CBR) and implies
that CBR may not require dynamic bindings! A little
reflection, however, should make it clear that using a case
would require binding (on the fly) its roles/slots to the
appropriate entities in the current situation. Further-
more, any but a trivial CBR system would have to propa-
gate some of these bindings in order to solve the indexing
problem. Cooper argues that a full-fledged treatment of
n-ary predicates may be unnecessary and counterproduc-
tive. We agree! Indeed, sHruTI does not offer such a
universal treatment (see sects. 4.9, 6, and 8).

Cooper also suggests that we need only solve the
binding problem for feasible pairing of roles and fillers:
because the number of feasible role-filler pairing is not
astronomical, it may be possible to dedicate nodes to each
of the feasible bindings. He concludes accordingly that it
may be possible to get by without dynamic bindings. He
seems to be making a crucial error, however, because a
system must not only deal with feasible but also nonfeas-
ible ones. Consider the sentence “The Grand Canyon
gave a computer to a monkey!” Surely the bindings
between giver and Grand Canyon are not feasible in
Cooper’s sense of the word. Yet we have no trouble in
creating this binding and answering questions about who
gave what to whom. So we are quite capable of repre-
senting essentially arbitrary pairings between concept/
instances and conceptual roles without requiring repeti-
tion, attention, and reflection.

R4. Learning

A number of commentators point out that we have not
investigated learning in detail. We agree. We also agree
with Martin that pursuing learning within sHruUTI Wil
provide an additional set of constraints that may lead to
further insights into the nature of reflexive reasoning. In
the target article we mentioned that we have a plausible
solution to the problem of one-shot learning of facts. We
are also pursuing the problenm of incremental rule learn-
ing (see below). As Hampson points out. the integration of
rules into the LTKB can be a slow and gradual process
requiring considerable exposure to a variety of rddevant
situations. This is to be expected. because to learn a rule
involves learning the correct argument mapping as well as
the assaciated o functions (see sect. 5.5 to embody the
appropriateness of these mappings (Cottrell apth vefers
to the o functions as “semantic filters™.




Grossberg summarizes work done by him and his
colleagues on a family of learning systems that can extract
rules from data. We would like to evaluate the power of
these systems in the context of a sHRuTI-like reflexive-
reasoning system.

Cottrell argues that using the pattern containing infer-
ence alternative (PCIA) discussed in section 9.4 will lead
to a number of advantages in learning rules and semantic
filters associated with rules. He does not realize that the
temporal synchrony approach used in SHRUTI can support
all the advantages he cites. This is illustrated in Figure
R1, which makes it clear that semantic filters as well as
covariance constraints can be learned within the temporal
synchrony approach (a more detailed description of this
approach will appear in Shastri 1993b). Figure Rla shows
three groups of nodes. The one on the bottom left is the
collection of all the predicate nodes. For simplicity, we
have only shown role (argument) nodes of predicates and
omitted the enabler and collector nodes. The group on
the right consists of all the type or feature nodes. As
discussed in R3.1, the representation of each entity can
be viewed as a pattern of activity over the collection of
type or feature nodes. The collection of nodes on the top is
the “hidden” structure consisting of a layer of 1-or nodes

sandwiched between two layers of p-btu nodes. The"

arrows indicate that nature of connectivity. Notice that
the role and feature nodes feed into the bottom layer of
the hidden structure and the top layer of the hidden
structure feeds back into the role nodes. The interconnec-
tion pattern in the hidden structure is as shown: the
bottom layer feeds into the second and third layer and the
second layer feeds into the third layer. The proposed
connectivity can be shown to support the learning of
type/feature preferences/restriction involving individual
roles as well as multiple roles.

Figure R1b shows the input activity for a particular
situation (John walked into the wall) and the associated
target activity (John got hurt). The role nodes will be

predicate role nodes feature nodes

Figure Rla.  Overview of the network structures required for
learning context-sensitive rles. The hidden structure would
develop the appropriate semantic filter for the propagation of
bindings between predicate roles. Interconnections between
collections of cells are indicated by the dark arrows. All links are
weighted and nodes have thresholds associated with them.

“
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Figure Rlb. The input and target patterns for the training
situation: “John walked into a wall” (antecedent), “John got hurt”
(consequent).

clamped to the input pattern shown in the figure (the
input need not be periodic) and the desired behavior of
the network would be the (suitably delayed) activation of
the patient role of hurt as specified in the target pattern.
One could use a suitable learning algorithm to learn the
correct weights in the network to encode the necessary
rules with the appropriate semantic filters. The above
interconnection pattern shculd also make it clear that
coutrary to Cottrell’'s (para. 7) and Garson’s (para. 6)
suggestions, the learning of rules does not require one-to-
one connectivity between all predicate role nodes.

R5. Miscellaneous issues

R5.1. Grounding. As pointed out by Diederich, we have
not addressed hcw the meaning of our representation is
ultimately grounded (Harnad 1990). We recognize that
grounding is central to the notion of representation, but
our concern in this target article has been with issues such
as expressive power, inferential adequacy, and scalability
of a biologically plausible representation and reasoning
system. We will have to face the issue of grounding if we
want to start ascribing real (not imputed) meaning to
nodes and circuits in SHRUTIL.

R5.2. Encoding of long-term facts and the IS-A hierarchy.
In paragraph 2 Strong argues that the encoding of a
partially instantiated fact like give(John, Susan, x) vio-
lates the closed word assumption (CWA). He writes that
given the fact give( John, Susan, x) the CWA implies the
answer to the question give( John, Susan, Car7)should be
no. We agree; indeed, this is exactly how the system
responds. So we do not see why he believes that sHRUTTS
response is inconsistent with the CWA. Strong is right,
however, about the encoding of a partially instantiated
fact using the I1S-A hicrarchy. The reasoning system aug-
mented with the 1S-A hierarchy e codes a fact such as
Ax:Thing give(John, Susan. x) exactly as he describes.
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Palm seems to be confusing long-term facts with
medium-term facts. The intended function of what we
have called “long-term facts” is indeed the essentially
permanent recording of a situation (a static set of bind-
ings). Some of this confusion can be resolved by recogniz-
ing that (1) only situations that are significant end up
being encoded as long-term facts and (2) long-term facts
are not entirely “forgotten” when the situation they en-
code ceases to be true. Ir-tcad, they are tagged in some
manner to indicate that :. .y are no longer the case. To
draw an analogy, when long-term facts cease to be true,
they do not just disappear; they continue to be around as
“ex-long-term facts.”

Palm seems to have misinterpreted the encoding of
long-term facts in Figure 12, inferring that the enabler,
collector, and argument nodes are duplicated for each
long-term fact. This is not the case. As we explained in
section 3.3, for each n-ary predicate there is only one
enabler, one collector, and n argument nodes. All the
long-term facts pertaining to this predicate share these
“general” nodes. So in Figure 12 if we were to add the
long-term fact buy( Jackie, Car?7) we would only add one
additional node, namely, a fact node.

The above confusion also leads Palm to think that
multiple predicate banks introduced in section 6 are
required for storing multiple long-term facts (end of para.
8). This is not the case. It turns ~ut that multiple predicate
banks have been posited for representing multiple dy-
namic instantiations of a predicate, not multiple long-
term facts.

The suggestions by Palm about encoding IS-A and
predicate hierarchies via set containment are well taken.
We see two potential problems with his proposal: (1)
representation of multiple dynamic predicate instances
and (2) encoding of exceptional properties/features of
concepts. Palm also comments about encoding soft rules
and the potential problem with using rate of firing to
encode confidence. He seems to have overlooked the
discussion in section 5.5 and note 26.

R5.3. suaum and a central controller. Overhasty dismis-
siveness seems to have led Dawson & Berkeley and
Touretzky & Fahlman to confuse a simple means of
communicating a query to SHRUTI and recovering the
answer with a central controller (see paras. 2 and 10,
respectively). They do not seem to understand that unless
we develop a complete system which accepts sensory
(speech/visual) input and produce~ ch/motor out-
put, we need to specify away of cc -1 ating with the
system. We fail to see how posing to SHRUTI by
activating the argument and filler nodes and the enabler
of the query predicate and thereafter waiting for the
collector node of the query predicate to become active
can be confused with the NETL-like requirement that a
central controller direct the activity of each node at each
step of the computation!

Touretzky & Fahlman misconstrue our reasonable con-
jecture that for linguistic input the phase separation in the
activity of distinct entities might begin during the parsing
process, which was made in the context o: discussing how
the activity in a system might self-organize so that each
distinct entity starts firing in a distinct phase. Our conjec-
ture is interpreted as our somehow hiding the central
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controller in a parser! They also fail to recognize that
instead of a central controller sHRUTI uses “distributed
control mechanisms™ as part of its representational ma-
chinery. As explained in section 9.1, these mechanisms
obviate the need for a central controller that directs the
activity of every node at each time step.

NOTES

1. SHRUTI is not an acronym but a Sanskrit work which refers
to the oral tradition of communicating knowledge.

2. Bienenstock (personal communication) had also ad: ocated
the use of aperiodic synchronous activity over periodic activity,

3. Lado et al. (1992) report finding svachronous oscillations
in the motor and sensory cortices during the execution of simple
hand movements by analyzing magneto-encephalography data.

4. As argued in Thorpe and Imbert (1989), there are about
100,000 distinct objects that can be named rapidly by people.
Hence the number of potential argument fillers is going to be at
least 100,000 if not more.

5. Note, however, that if one is only secking local rather than
global consistency then it is possible to seck local support and
find a locally consistent hypothesis in a reflexive manner. An
example of this may be found in the abductive reasoning system
described by Ajjanagadde (1991).

6. There are notable exceptions, such as the approach ex-
pounded by Newell (1990; see also multiple book review, BBS
15(3) 1992). Feldman, although not a cognitive psychologist, has
long emphasized that the biological architecture places strong
computational constraints on the nature of cognitive models. A
good example of this is his well-known "hundred step” argument
(Feldman & Ballard 1982). [See also Feldman’s “Four Frames
Suffice” BBS 8(2) 1985.]

7. In the case of a query, the possible inferences correspond
to the possible derivations of the query. As in the forward case,
only derivations that do not violate WMRR capacity and depth
bounds are possible.

8. These types of rules have been proposed for linking svntac-
tic structures with conceptual structures within a suruTI-like
framework (Shastri 1992).

9. It is possible to incorporate certain types of rules into our
behavior quite rapidly. Consider “hit the left button if you sce an
X on the screen.” Such rules, however, seem to involve a fairly
direct mapping between perception and action.

10. This would he a much longer time than the time a fact
may stay active in the WMRR via temporal synchrony but much
shorter than the time a fact may stay in medium-term memory.

11. The use of distributed representations and coarse coding
by a model does not imply that the model is cognitively sig-
nificant.
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